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Abstract. In INS (Inertial Navigation System) /GPS 
(Global Positioning System) integration, nonlinear 
models should be properly handled. The most popular 
and commonly used method is the Extended Kalman 
Filter (EKF) which approximates the nonlinear state and 
measurement equations using the first order Taylor series 
expansion. On the other hand, recently, some nonlinear 
filtering methods such as Gaussian Sum filter, particle 
filter and unscented Kalman filter have been applied to 
the integrated systems. In this paper, we propose a 
modified Gaussian Sum filtering method and apply it to 
land-vehicle INS/GPS integrated navigation as well as the 
in-motion alignment systems. The modification of 
Gaussian Sum filter is based on a combination of 
Gaussian Sum filter and so-called unscented 
transformation which is utilized in the unscented Kalman 
filter in order to improve the treatment of the nonlinearity 
in Gaussian Sum filter. In this paper, the performance of 
modified Gaussian Sum filter based integrated systems is 
compared with other filters in numerical simulations. 
From simulation results, it was found that the proposed 
filter can improve transient responses of the filter under 
large initial estimation errors.   
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1 Introduction 

In the INS/GPS integrated system, the complementary 
characteristics of INS and GPS are exploited. INS 
provides position, velocity and attitude information at a 
high update rate with the continuous availability, and the 
long term accuracy of position and velocity information 
of GPS prevents the growing navigation errors of INS. In 
other words, the navigation errors of INS are estimated 
and corrected by using GPS measurements (Siouris, 
1993; Grewal, 2001).  

For many years, the extended Kalman filter (EKF) has 
been widely utilized as the estimator in the integrated 
navigation systems (Maybeck, 1979; Gelb, 1974). 

Additionally, in the case of conventional navigation 
systems, the initialization of INS navigation states is 
completed prior to vehicle motion and then the ordinary 
integrated navigation is implemented. Usually, this 
initialization method needs 5 to 10 minutes and the 
vehicle must be stopped. It is, however, inconvenient and 
impractical when there is not enough time to stop at a 
start point. Thus it is motivated to develop in-motion 
alignment and navigation algorithms which can provide 
the accurate attitude information while moving. Because 
the initial attitude of the land-vehicle is unknown, the 
attitude is usually assumed to be 0. Thus, when the initial 
heading error is large, the nonlinear character of the INS 
error equations is emphasized for in motion alignment 
(Rogers, 2001). Therefore several nonlinear filtering 
methods such as Monte Carlo filter (Kitagawa, 1996; 
Doucet, 2000), Quasi-linear optimal filter (Sunahara, 
1970), Gaussian Sum filter (Alspach, 1972) and 
unscented Kalman filter (Julier, 2000), have been applied 
to the integrated navigation systems. The performance 
comparisons of the nonlinear filters in the integrated 
navigation systems also have been reported by the 
authors (Tanikawara, 2004; Fujioka, 2005; Nishiyama, 
2006).  

According to (Nishiyama, 2006), although Gaussian Sum 
filter (GSF) works well with large uncertainties in the 
initial attitude information, the linearization technique is 
employed similarly to the extended Kalman filter. On the 
other hand, the unscented Kalman filter (UKF) has been 
recently paid much attention in the area of the integrated 
navigation (Yi, 2005; An, 2005; Shin, 2007). The 
unscented Kalman filter calculates the predicting mean 
and covariance of the state vector from a set of samples 
that are called sigma points by means of so-called 
unscented transformation. In this paper, we try to 
combine the GSF and the unscented transformation in 
order to improve the treatment of the nonlinearity in the 
GSF. With this combination, it is expected that the 
transient response of the filter can be improved under 
large initial estimation errors.  

In this paper, firstly we briefly review the algorithms of 
the nonlinear filters that are applied in this paper. Then, 
the modified Gaussian Sum filtering algorithm is derived 
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by utilizing the unscented transformation. Finally, the 
performance of EKF, GSF, UKF based and modified 
Gaussian Sum filter based integrated systems is compared 
in numerical simulations.  

2 Description of the system 

In this work, closed-loop, tightly coupled mechanization 
is adopted for the INS/GPS integration. Fig. 1 shows the 
architecture of the integration with major data paths 
between the system components. The components of the 
system are strapdown INS and GPS receiver. The INS 
contains IMU (Inertial Measurement Unit: accelerometer 
and gyro). Based on the measured acceleration and 
angular rate, the INS computes the  position, velocity and 
attitude of the vehicle relative to their initial value at high 
frequency. But there exist unbounded position errors that 
grow slowly with time. The concept of the integrated 
navigation system of Fig. 1 is to reduce the INS errors by 
using some external measurement from a GPS receiver. 
In this research, GPS double differenced carrier phase 
and undifferenced Doppler measurements are employed 
as external measurements to remove the INS errors. The 
nonlinear filter estimates the errors in the navigation and 
attitude information using the raw GPS data.  

 
Fig. 1. Description of the system 

2.1 Coordinate systems  

To integrate the navigation systems, definitions of 
coordinate systems that the navigation systems or 
included sensors refer to are important. This section 
defines the coordinate frames used in this paper and 
represents the angular relationship between them. The 
coordinate frames are defined as follows:  

1) The E  frame ( , , )E E EX Y Z  is the right-handed earth 
fixed coordinate frame.  It has the origin at the center 
of the earth; the EZ - axis is directed toward the 
North Pole; the EX - and EY - axes are located in the 
equatorial plane, whereby the EX - axis is directed 

toward the Greenwich Meridian. It is used for the 
definition of position location such as latitude and 
longitude. 

2) The L  frame ( , , )L L LX Y Z  is the right-handed 
locally level coordinate frame. The LX - and LY - 
axes are directed toward local north and east 
respectively; LZ - axis is downward vertical at the 
local earth surface referenced position location. It is 
used for defining the angular orientation of the local 
vertical in the E   frame. 

3) The C  frame ( , , )C C CX Y Z  is the right-handed 
computer frame that is defined by rotating the L  
frame around negative LZ - axis by the “wander 
angle” α ; toward the negative LY - axis and the CZ - 
axis is directed toward the negative LZ - axis 
(upward vertical). It is used for integrating 
acceleration into velocity, and used as the reference 
for describing the strapdown sensor coordinate frame 
orientation. 

4) The B frame ( , , )B B BX Y Z  is the strapdown inertial 
sensor coordinate frame (body frame). The BX - axis 
is directed toward the head of the vehicle; the BY - 
axis is the right-hand of the vehicle; the BZ - axis is 
downward vertical to the BX - BY  plane.  The frame 
is fixed on the vehicle and rotates with the motion of 
the vehicle. 

 
Fig. 2. Coordinate frames 

Fig. 2 shows the spatial image of the E, L and C frames, 
where λ  and ϕ  represent the longitude and the latitude 
respectively. In the inertial computations, the acceleration 
sensed with respect to the B frame have to be transformed 
onto the C frame. The velocity and position of the vehicle 
are then computed with respect to the C frame. Such a 
transformation is known as the Euler angle 
transformation. We define the product of direction cosine 
matrix for this transformation as C

BT . Then the 
coordinates ( , , )B B Bx y z  in the B frame are transformed 
into ( , , )C C Cx y z  in the C frame as follows: 
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 (1) 

where C
BT  is the direction cosine matrix. 

3 INS error model 

The direction cosine matrix C
ET  is represents the 

transformation from the E frame to the C frame, and it 
can be decomposed as follows. 

C C L
E L ET T T=  (2) 

On the other hand, the computed matrices C
LT  and L

ET  

contain errors C
LTδ  and L

ETδ  respectively. The error 
E

CTδ  can be formulated as 

{ [ ( )] ( )}

C C C
E E E

C L C L
L E L E

C C L
L L L L E
L

E

T T T

T T T T

T I r T r T

T

δ

δ δ δ

≡ −

= −

= − × − ×

=R

 (3) 

where Lrδ ≡ [ ,L xrδ , ,L yrδ , 0 ] T  is horizontal angular 

position error, and the relation of  L
ET =[ ( )] L

L EI r Tδ− ×  is 
used in the calculation of equation (3) with the 
assumption that ,L xrδ  and ,L yrδ  are small. Also, ( )a×  

for 3 1×  vector a = [ xa , ya , za ] T is the skew- symmetric 
matrix defined by  

0
( ) 0

0

z y

z x

y x

a a
a a a

a a

−⎡ ⎤
⎢ ⎥× ≡ −⎢ ⎥
−⎢ ⎥⎣ ⎦

 (4) 

And R  is the position error matrix defined as follows 
(Rogers 2003, 2001). 

, ,

, ,

, ,

cos sin cos sin

sin cos cos sin

0

C y C x

C x C y

L y L x

r r

r r

r r

δ α δ α δ δα δ δα

δ α δ α δ δα δ δα

δ δ

⎡ ⎤− −
⎢ ⎥

≡ − − − −⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

R  (5) 

where  

sin sin( ) sinδ α α δα α≡ + −  (6) 

cos cos( ) cosδ α α δα α≡ + −  (7) 

According to (Rogers, 2001, 2003), we have  

/ / /( ) ( )( ) ( )L C C C C
E L L LE C E CT Tω ω ω= × − × + + ×�R R R  (8) 

where the dot above a letter denotes differentiation with 
respect to time, the vector /

L
E Lω  is the rotation rate of the 

L frame with respect to the E frame in the L frame 
coordinate system, and the vector /

C
E Cω  is similarly 

defined. From equation (8), the position error ( ,C xrδ , 

,C yrδ ) as well as azimuth error (δα ) equations can be 
derived.  

3.1 Velocity error model  

The computed velocity Cv  also contains the velocity 
error Cδ v  such that  

C C Cv v vδ= +  (9) 

and the velocity equation is given by  

( 2 )C C C C C Cv f v gρ= − + Ω × +  (10) 

where Cf  is non-gravitational specific force vector, ρ  is 
relative rate vector, and CΩ  is earth rate vector. The 
specific force is proportional to the inertial acceleration 
of the system due to all forces except gravity measured 
by the accelerometer. Cg  is the gravity vector, positive 
toward the centre of the earth in the C frame. From 
equations (9) and (10), the velocity error is modelled by  

( 2 )
( 2 )
( 2 )

C C C C C C C

C C C

C C C C

v b f v
v

v g

δ δθ δρ δ
ρ δ
δρ δ δ δ

= + × + × + Ω
− + Ω ×
− + Ω × +

�

 (11) 

where Cδθ ≡ [ ,C xδθ , ,C yδθ , ,C zδθ ] T  is the attitude error.  

3.2 Attitude error model  

The attitude error Cδθ  causes the error of the 

transformation matrix C
BT . The computed matrix C

BT  
which contains the attitude error is formulated by  

[ ( )]C C
B C BT I Tδθ= − ×  (12) 

Therefore, we have following attitude error model.  

/ / /
C C C

C C CE C I E I C dδθ δω δω δθ ω= + + × +�  (13) 

where Cd  denotes gyro drift.  
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3.3 Sensor error model  

In this paper, the accelerometer bias Bb  and gyro bias 

Bd  are modelled as the first order Markov processes 
respectively as follows:  

1( ) ( ) ( )

1( ) ( ) ( )

B B b
b

B B d
d

b t b t u t

d t d t u t

τ

τ

= − +

= − +

�

�
 (14) 

where bτ  and dτ  are the correlation time constants and 
( )bu t , ( )du t  are zero mean Gaussian white noise 

processes.  

3.4 State equation  

In order to implement the nonlinear filtering for 
integrated navigation, here, we define the state vector. 
Because the double differenced carrier phases are used as 
the measurements in this paper, the unknown integer 
ambiguities should be simultaneously estimated. 
Therefore the state vector is defined such that it includes 
the INS errors as well as the integer ambiguities as 
follows:  

, , , , , ,

, , , , , , ,

1,1,2 1,3
, , ,

, , , , , , ,

, , , , , , , , ,

 , , , ,

C x C y C x C y C x C y C

C z B x B y B z B x B y B z

ns
k u k u k u

r r v v h

v b b b d d d

c t N N N

δ δ δ δ δθ δθ δ

δ γ β

δ

⎡= ⎣

⎤
⎦…

x

T

 (15) 

where 1,2
,k uN  denotes the double differenced integer 

ambiguity of the satellites 1, 2 and the receivers k, u, and 
sn  is the number of visible satellites. β  and γ  are 

defined as follows:  

cos 1
sin

β δα
γ δα
≡ −
≡

 

The descriptions of the state vector components are listed 
in Table 1. Then, from equations (8), (11), (13) and (14), 
the state equation can be formulated by  

( ) ( ( ), ) ( )x t f x t t tη= +�  (16) 

where (•, )f t  is the time-varying nonlinear function, and 
the process noise ( )tη  is assumed to be mutually 
independent zero mean Gaussian white noise with 
covariance matrix ( )N t . 
 
 
 
 

Table 1. List of states 

No. Symbol Error state 
1 ,C xrδ  CX -axis position error in angle 
2 ,C yrδ  CY -axis position error in angle 
3 ,C xvδ  CX -axis velocity error 
4 ,C yvδ  CY -axis velocity error 
5 ,C xδθ  CX -axis tilt error 
6 ,C yδθ  CY -axis tilt error 
7 γ sinδα  
8 β cos 1δα −  
9 Chδ  CZ -axis altitude error 

10 ,C zvδ  CZ -axis velocity error 
11 ,C xb  BX -axis accelerometer bias 
12 ,C yb  BY -axis accelerometer bias
13 ,C zb  BZ -axis accelerometer bias 
14 ,C xd  BX  -axis gyro bias 
15 ,C xd  BY  -axis gyro bias 
16 ,C xd  BZ  -axis gyro bias, 
17 1,2

,k uN  double differenced ambiguity 

#  #  #  
 

By discretizing the state equation (16), we have  

( 1) ( ) ( ( ), ) ( )x k x k f x k k t w k+ = + Δ +  (17) 

where ( )w k  is assumed to be Gaussian white noise with 
zero mean and diagonal covariance matrix Q(k), and tΔ  
is a sampling interval of the measurement data.  

3.5 Measurement equation  

In this paper, the measurements are the double 
differenced carrier phase and Doppler data. By ignoring 
some errors in the carrier phase data such as the 
remaining ionospheric and tropospheric delays and 
multipath errors, then the double differenced carrier 
phase measurement can be simply modelled by  

( ) ( ) ( )ku gEy k h r kNλ ε= + +  (18) 

where Er  is the position vector in the E frame, the 
function h is the nonlinear function that indicates the 
distance between satellites and receivers, kuN  is the 
ambiguity vector, λ  is the wave length, and gε  is the 
measurement noise.  

By linearlizing equation (18) with the first order Taylor 
series approximation around the position indicated by 
INS, ( )i

Er k , and applying appropriate transformations of 
the coordinate systems, we obtain the measurement 
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equation of the INS position error in the C frame as 
follows.  

( ) ( ) ( ( ))
ˆ ( ) ( ) ( )

i
E

ku gC

y k y k h kr
H k r k kNδ λ ε

≡ −

= + +

�
 (19) 

where  

ˆ ( ) ( ) ( ) ( ) ( ) ( )E L
L A B CH k H k T k T k T k T k≡ − �  (20) 

and  

( ) ( )

( ( ))( )
( )

( ) 0 0
0 1 0

0 0 1 0 0
cos 0 0 10 0 1

i
E E

E

E k k

p

p
A B

h r kH k
r k r r

R h
R h

T T
λ

=

⎡ ⎤∂
≡ ,⎢ ⎥∂⎣ ⎦

− +⎡ ⎤
⎡ ⎤⎢ ⎥+ ⎢ ⎥⎢ ⎥≡ , ≡
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

�

 

where pR  is the earth radius.  

The Doppler measurement can be modelled by the 
change of the distance between the receiver and the 
satellite in the sampling interval tΔ  (Misra, 2001). By 
using the velocity error vector in the C frame, Cδ v , and 
the appropriate transformations similarly to the above 
derivations, the Doppler measurement can be formulated 
as  

{ }( ) ( ) ( ) ( )E pi
C C dEu u uCD k G k c t kv v vT δ δ ε= − − + +1 ��  (21) 

where  
T

TT T T1 2

TT T T( ) ( ) ( )

s

i
E E

p
p un

u uu u u
E

E E E E
C C CC

rG gg g g
r r r

T T TT

=

⎡ ⎤
⎢ ⎥⎣ ⎦

∂⎡ ⎤⎡ ⎤≡ , ≡ ,⎢ ⎥⎣ ⎦ ∂⎣ ⎦

≡

"

� "

  

and p
ur  denotes the distance between the receiver u and 

the satellite p, p
Ev  is the velocity of the satellite p in the E 

frame and dε  is the measurement noise. Then, we have 
the following Doppler measurement equation.  

( )

1

Ep i
cEu u u u C

CE
du C

u

D k D G Gv vT
vG T c t

δ
εδ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

≡ + −

⎡ ⎤= − +⎣ ⎦

� �

� �
 (22) 

Finally, from equations (19) and (22), we have the 
measurement equation for the integrated navigation in 
general form:  

( ) ( ) ( ) ( )z k H k x k kε= +  (23) 

where T T T( ) [ ( ) ( )]uz k k ky D≡ � .  

4 Nonlinear filtering 

Nonlinear filtering techniques are applied to the 
integrated INS/GPS system in order to estimate the state 
vector (the errors of INS described above). In this section, 
firstly, we briefly review the filter algorithms of the GSF 
and the UKF. Then the modified Gaussian Sum filter 
(MGSF) algorithm is derived.  

4.1 Gaussian Sum filtering  

Let kZ  be the set of the measurement such that  

{ (1) (1) … ( )}kZ z z z k= , , ,  (24) 

In the GSF (Alspach, 1972), a posteriori probability 
density ( ( ) )kp x k Z|  is formed by the convex 
combination of the outputs of several Kalman filters 
processed in parallel. The a priori density 1( ( ) )kp x k Z −|  
is assumed that it is formulated by the sum of several 
normal distributions as follows:  

1
1

( ( ) ) ( 1)

( 1) ( 1)

m
j

k
j

j j

p x k Z k k

N k k P k kμ

γ

μ

−
=

| = | −

⎡ ⎤× | − , | −⎣ ⎦

∑  (25) 

where m is the number of distributions, and jγ  is the 
weight for the j-th distribution such that  

1
( 1) 1 ( 1) 0

m
j j

j
k k k kγ γ

=

| − = , | − ≥∑  

And [ ]N θ,Σ  denotes the normal probability density 
function with mean θ  and covariance matrix Σ . Then, 
by the Bayesian recursion relations, a posteriori density 
can be formulated by  

1
( ( ) ) ( ) ( ) ( )

m
jj j

k
j

p x k Z k k N k k P k kμγ μ
=

⎡ ⎤| = | | , |⎣ ⎦∑  (26) 

where  

( )
( ) ( 1)

( ) ( ) ( ) ( 1)

j j

jj

k k k k

K k z k H k k kμ

μ μ

μ

| = | −

+ − | −
 

( ) ( 1) ( ) ( ) ( 1)j j j jP k k P k k K k H k P k kμ μ μ μ| = | − − | −  
T

1T

( ) ( 1) ( )

( ) ( 1) ( )( )

j j

j

K k P k k H k

H k P k k R kH k

μ μ

μ

−

= | −

⎡ ⎤| − +⎣ ⎦
 

and the weight ( )j k kγ |  is given by  

1

( 1) ( )( )
{ ( 1) ( )}

j j
j

m l l
l

k k kk k
k k k

γ βγ
γ β

=

| −
| =

| −∑
 (27) 
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where  

T

( 1) ( 1 1)

( ) ( 1)

( 1) ( ) ( ) ( 1)
( ) ( 1) ( ) ( )

j j

j jj

jj

j j

k k k k

k N k k P

k k z k H k k k
P H k P k k H k R k

νν

νν μ

γ γ

β ν

μν

⎡ ⎤
⎢ ⎥⎣ ⎦

| − = − | −

= | − ,

| − ≡ − | −

≡ | − +

 

Therefore, we have the filtered estimator  

1

ˆ( ) ( ) ( )
m

jj

j
x k k k k k kγ μ

=

| = | |∑  (28) 

The a priori density ( ( 1) )kp x k Z+ |  can be rewritten with 
the same algorithm as the EKF as follows.  

1
( ( 1) ) ( 1 )

( 1 ) ( 1 )

m
j

k
j

j j

p x k Z k k

N k k P k kμ

γ

μ

=

+ | = + |

⎡ ⎤× + | , + |⎣ ⎦

∑
 (29) 

where  

( 1 ) ( ( ))j jk k f k kμ μ+ | = |  (30) 

T( 1 ) ( ) ( ) ( ) ( )j j j jP k k F k P k k k Q kFμ μ+ | = | +  (31) 

( )

( )( )
j

j

k k

f xF k
x x μ= |

∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦
 (32) 

( 1 ) ( )j jk k k kγ γ+ | = |  

4.2 Unscented Kalman filter  

In the UKF, the predict mean ˆ( 1 | )x k k+  and covariance 
( 1 | )P k k+  are calculated from a set of samples which is 

called the sigma points. This method is called the 
unscented transformation (Julier, 2000). Under the 
assumption that the system noise is independent and 
additive, the predict mean and covariance are computed 
as following steps.  

Step1: choose the sigma points ( )j k kχ |  which is 

associated with the n-dimensional state vector ( )x k  as 
follows.  

00 ˆ( ) ( )

ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

1 ( 1 2 … )
2( )

j j

j n j

j j n

k k x k k W
n

k k x k k n P k k

k k x k k n P k k

W W j n
n

κ
χ

κ
κχ

κχ

κ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟+ ⎝ ⎠

+

| = | , =
+

| = | + + |

| = | − + |

= = , = , , ,
+

 

Step2: compute a set of transformed samples through the 
process model equation (17),  

( 1 ) ( ( ) )j jk k f k k kχ χ+ | = | ,  

Step3: compute the predicting mean and covariance as 
follows  

2

0

ˆ( 1 ) ( 1 )
n

j j
j

x k k W k kχ
=

+ | = + |∑  

2
T

0

( 1 ) ( )
n

j j j
j

P k k W Q kχ χ
=

+ | = +∑ � �  

ˆwhere ( 1 ) ( 1 )j j k k x k kχ χ≡ + | − + |�  

jW  is the weight of the j-th point and κ  is a scaling 

parameter. ( ( ) ( )) jn P k kκ+ |  is the j-th column of the 
matrix square root of ( ) ( )n P k kκ+ | . Then, once the 
observation ( 1)z k + is obtained, ˆ( 1 )x k k+ |  and ( 1 )P k k+ |  
are updated to ˆ( 1 1)x k k+ | +  and ( 1 1)P k k+ | +  as 
follows.  

( 1 ) ( ) ( 1 )j jk k H k k kZ χ+ | = + |  

2

0

ˆ( 1 ) ( 1 )
n

jj
j

z k k W k kZ
=

+ | = + |∑  (33) 

2
T

0
( 1 ) ( )

n

j j j
j

P k k W R kZ Zνν
=

+ | = +∑ � �  (34) 

2
T

0

( 1 )
n

x j jj
j

P k k W Zν χ
=

+ | = ∑ ��  (35) 

ˆwhere ( 1 ) ( 1 )jj k k z k kZZ ≡ + | − + |�  

1( 1) ( 1 ) ( 1 )xK k P k k P k kν νν
−+ = + | + |  (36) 

ˆ ˆ ˆ( 1 1) ( 1 ) ( )( ( ) ( 1 ))x k k x k k K k z k z k k+ | + = + | + − + |  (37) 

T( 1 1) ( 1 ) ( ) ( 1 ) ( )P k k P k k K k P k k K kνν+ | + = + | − + |  (38) 

Since the measurement equation (23) is linear in this 
navigation problem, above equations (33)-(35) can be 
simply expressed by  

ˆˆ( 1 ) ( ) ( 1 )z k k H k x k k+ | = + |  (39) 

T( 1 ) ( ) ( 1 ) ( )P k k H k P k k H k Rνν + | = + | +  (40) 

T( 1 ) ( 1 ) ( )xP k k P k k H kν + | = +  (41) 

4.3 Modified Gaussian Sum filter  

In the Gaussian Sum filtering algorithm, we can see from 
equations (30)-(32) that the linearization technique is 
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employed similarly to the extended Kalman filter. In this 
paper, we propose the modified Gaussian Sum filter by 
applying the unscented transformation algorithm to the 
time updating algorithm of the GSF, equations (30)-(32). 

Step1: similarly to the step 1 of the UKF, for j-
th ( 1 2 … )j N= , , ,  density in GSF, choose the sigma points 
and weights as follows.  

00( ) ( )j jk k k k W
n
κ

χ μ
κ

| = | , =
+

 

( ) ( ) ( ) ( )j j j
l

l
k k k k n P k kμκχ μ ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

| = | + + |  

( ) ( ) ( ) ( )j j j
l n

l
k k k k n P k kμκχ μ ⎛ ⎞

⎜ ⎟
⎜ ⎟+ ⎝ ⎠

| = | − + |  

1 ( 1 2 … )
2( )l l nW W l n

n κ+= = , = , , ,
+

 

Step2: compute a set of transformed samples through the 
process model equation (17),  

( 1 ) ( ( ) )j j
l lk k f k k kχ χ+ | = | ,  

Step3: compute the j-th predicting mean and covariance 
as follows.  

2

0
( 1 ) ( 1 )

n
j j

l l
l

k k W k kμ χ
=

+ | = + |∑  (42) 

2
T

0

( 1 ) ( ) ( )
n

j jj
l l l

l

P k k W Q kμ χ χ
=

+ | = +∑  (43) 

where ( 1 ) ( 1 )j j j
l l k k k kχ χ μ≡ + | − + |  

In the MGSF, the original time updating algorithm of 
equations (30) and (31) are substituted by (42) and (43) 
respectively. 

5 Experimental results 

The experiments of the INS/GPS In-Motion Alignment 
and navigation algorithms described above were carried 
out by using simulated INS and GPS data. In the 
experiments, we assume the vehicle runs at a speed of 
around 15 [km/h] for about 10 minutes. The speed at the 
start point was 0 [km/h], and the initial azimuth angle was 
60 [deg]. The test trajectory in the local level horizontal 
plane is shown in Fig. 3. The data were obtained by 
utilizing the Matlab6.5 and INS Toolbox1.0 (GPSoft 
LLC.) at 50 [Hz] rate for IMU and at 1 [Hz] rate for GPS.  

Four types of filters, i.e. EKF, GSF, UKF and MGSF are 
used in the experiments and compared. The nonlinearity 
of the INS usually occurs when there exist large attitude 
errors. So in the experiments, the initial state estimates 
are set to have large azimuth error. And we assume that 

there exist no errors in the other initial estimates. 
Therefore, in the EKF and UKF, the initial estimate 
ˆ(0 1)x | −  is set to 0, and (0 1)P | −  and Q are configured 

from the nominal equipment specifications in Table 2. In 
this case, the states related to the azimuth error, i.e. 7th 
and 8th components of the state vector have 60 [deg] 
initial estimation error respectively.  

 
Fig. 3. Test trajectory 

 

Table 2. Sensor error specification 

 

In the GSF and MGSF, three normal distributions are 
utilized, i.e. 3m = , and (0 1) 1 2 3jP jμ | − , = , ,  are set to the 
same value of the EKF and UKF, i.e. 

(0 1) (0 1)jP Pμ | − = | − . The initial estimates (0 1)jμ | − ,  
1 2 3j = , , are also set to 0 except for the 7th and 8th 

components of the state vector (see Table ), β  and γ , 
that represent the azimuth error. They are assumed to 
have the initial azimuth error estimates such that 

60 0 60δα = − , , +  [deg]. 

The processing results are shown in Fig. (4)-(7). Figs. (4) 
and (5) show the results of the positioning and 
comparison of the positioning errors. Table 3 also shows 
RMS (Root Mean Square) values of the position errors. 
From Fig. (5) we can see that the MGSF shows faster 
convergence than the others, and the GSF and MGSF 
show better performances than EKF and UKF. Therefore, 
the GSF and MGSF can work well when there exist large 

Accelerometer Specification 
Bias 80 [ μ G] (1 )σ  

Scale factor 150 [ppm] (1 )σ  
Random error 0.0003 [m/s]2 

Gyroscope Specification 
Bias 20 [deg/h] (1 )σ  

Scale factor 500 [ppm] (1 )σ  
Random error 0.06 [deg/ h ] 
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azimuth error because they can treat large azimuth error 
by assuming multiple initial error distributions. From 
Table 3, we can also see that the MGSF achieves the best 
performance in this simulation. 

 
Fig. 4. Positioning results 

 

 
Fig. 5. Positioning errors 

 

Table 3. Root mean square of position errors 

 North error [m] East error [m] 
EKF 0.08 0.61 
UKF 0.09 0.10 
GSF 0.02 0.13 

MGSF 0.02 0.09 
 

Table 4. Root mean square of velocity errors 

 North error [m/s] East error [m/s] 
EKF 0.36 0.25 
UKF 0.34 0.19 
GSF 0.36 0.22 

MGSF 0.34 0.19 

Fig. 6 and Table 4 show the velocity errors and their 
RMS values respectively. From these figures and tables, 
the all filters show almost same performance, whereas the 
UKF and MGSF show slightly better performance than 
the EKF and GSF. 

Finally, Fig. 7 shows the results of the azimuth errors. 
From Fig. 7, we can see that all filters show almost same 
results after 200 [sec], but the MGSF shows faster 
convergence in its transient response from 0 to 200 [sec]. 
Therefore, from these results of the simulation, we can 
consider that the UKF and MGSF can achieve better 
performance than the EKF and GSF, and the MGSF can 
work well when there exist a large initial azimuth error.  

 
Fig. 6. Velocity errors 

 

 
Fig. 7. Azimuth errors 

6 Conclusions  

In this paper, the modified Gaussian Sum filtering 
algorithm was derived by applying the unscented 
transformation to the Gaussian Sum filter, and it was 
applied to the GPS/INS integrated system. The algorithm 
was tested and compared with the EKF, GSF and UKF by 
using simulated data. From the experimental results, it 
was found that the derived MGSF show the quick 
transient response for azimuth error estimation. Therefore 
the MGSF has an ability to improve the navigation 
performance, when there are large initial azimuth errors.  
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