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Abstract. This paper presents the results of augmenting 
6DoF Simultaneous Localisation and Mapping (SLAM) 
with GNSS/INS navigation system. SLAM algorithm is a 
feature based terrain aided navigation system that has the 
capability for online map building, and simultaneously 
utilising the generated map to constrain the errors in the 
on-board Inertial Navigation System (INS). In this paper, 
indirect SLAM is developed based on error analysis and 
then is integrated to GNSS/INS fusion filter. If GNSS 
information is available, the system performs feature-
based mapping using the GNSS/INS solution. If GNSS is 
not available, the previously and/or newly generated map 
is now used to estimate the INS errors. Simulation results 
will be presented which shows that the system can 
provide reliable and accurate navigation solutions in 
GNSS denied environments for an extended period of 
time. 

Keywords: 6DoF SLAM, low cost GNSS/INS, vision 
sensor, features mapping, UAV 

 

1 Introduction 

The Global Navigation Satellite System (GNSS) is a 
space-borne, radio navigation system. In airborne 
navigation, its complementary characteristics to the 
Inertial Navigation System (INS) make it an excellent 
aiding system, resulting in integrated GNSS/INS 
navigation systems. In UAV application, due to its 
limited payload capacity and accurate navigation 
requirement to guide and control the vehicle, the low-cost, 
light-weighted, and compact-sized GNSS/INS system has 
been focused significantly. 

The main drawback in the cost-effective GNSS/INS 
system is that the integrated system becomes more 
dependent on the availability and quality of GNSS 
information. Unfortunately, GNSS information can be 
easily blocked or jammed by intentional/unintentional 
interference. Even a short duration of satellite signal 
blockage can degrade the navigation solution 
significantly as shown in Kim 2004. 

In this paper, a new concept of terrain-aided navigation, 
known as Simultaneous Localisation and Mapping 
(SLAM) is considered to aid INS during GNSS denied 
situations. SLAM was firstly addressed in the paper by 
Smith and Cheeseman, 1987 and has evolved from the 
robotics research community to explore unknown 
environments, where absolute information is not available 
(Dissanayake and et al 2001, Guivant 2001, Williams and 
et al 2001). Contrary to the exiting terrain aided 
navigation system, SLAM does not require any pre-
surveyed map database. It builds the map incrementally 
by sensing environment and uses the map to localise the 
vehicle simultaneously, which results in a truly self-
contained autonomous navigation system.  

Fig. 1 The overall structure of SLAM is about building a relative map of 
feature using relative observations, defining a map, and using this map 

to localise the vehicle simultaneously. 

The nonlinear 6DoF SLAM algorithm, incorporating 
IMU as its core dead-reckoning sensor, was firstly 
demonstrated in paper by Kim and Sukkarieh, 2004. Its 
airborne application is described in Figure 1. The vehicle 
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starts navigation from an unknown location and an 
unknown environment. The vehicle navigates by using its 
dead-reckoning sensor or vehicle model. As the onboard 
sensors detect features from the environment, the SLAM 
estimator augments the feature locations to a map in some 
global reference frame and begins to estimate the vehicle 
and map states together with successive observations. 
The ability to estimate both the vehicle location and the 
map is due to the statistical correlations that exist within 
the estimator between the vehicle and features, and 
between the features themselves. As the vehicle proceeds 
through the environment and re-observes old features, the 
map accuracy converges to a lower limit, which is a 
function of the initial vehicle uncertainty when the first 
feature was observed (Dissanayake and et al, 2001). In 
addition, the vehicle uncertainty is also constrained 
simultaneously.  
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Fig. 2  The architecture of SLAM augmented GNSS/INS system 

  
In this paper the 6DoF SLAM algorithm is augmented to 
the GNSS/INS navigation system to provide reliable INS 
aiding in GNSS denied environment. Figure 2 presents 
the architecture of the SLAM augmented GNSS/INS 
system. The key feature in this approach is the 
complementary fusion structure, which has high-speed 
INS module and low-speed and computationally 
expensive SLAM/GNSS/INS filter. To achieve this, the 
nonlinear SLAM algorithm was re-casted into linearised 
error state form as in the work of Kim, 2004, then it is 
augmented to fusion filter. In this architecture, the INS 
and map is maintained outside the SLAM filter and the 
map is treated as external map database. The fusion filter 
works as either feature-tracking filter or SLAM filter 
depending on the availability of GNSS observation. If 
GNSS provides reliable observations, then the on-board 
terrain observations are used to build the feature map and 
SLAM/GNSS/INS filter estimates the errors in INS and 

map, which results in a feature (or target)-tracking system. 
However, in GNSS-denied situation, the terrain 
observations are solely used to estimate the errors in INS 
and map, which results in SLAM mode operation. 
Although there are no global observations from GNSS, 
the constant re-observation and revisit processes can 
improve the quality of map and navigation performance.   

Section 2 will present the external INS loop and map and 
Section 3 will formulate the error model of 
SLAM/GNSS/INS algorithm and Kalman filter structure. 
In Section 4, simulation results are provided based on our 
Brumby UAV, then Section 5 will provide conclusions 
with future work. 

2 External INS loop and map 

In the complementary SLAM/GNSS/INS structure, the 
SLAM filter aids the external INS loop in a 
complementary fashion. The inertial navigation algorithm 
is to predict the high-dynamic vehicle states from the 
Inertial Measurement Unit (IMU) measurements. In this 
implementation a quaternion-based strapdown INS 
algorithm formulated in earth-fixed tangent frame is used 
(Kim, 2004): 
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where ( ), ( ), ( )n n nk k kp v q  represent position, velocity, 
and quaternion respectively at discrete time k, t∆ is the 
time for the position and velocity update interval, 

*( ) ( )n kq  is a quaternion conjugate for the vector 
transformation, ⊗  represents a quaternion multiplication, 
and ( )n k∆q  is a delta quaternion computed from 
gyroscope readings during the attitude update interval. 

3 Complementary SLAM/GNSS/INS Algorithms  

The mathematical framework of the SLAM algorithm is 
based on an estimation process which, when given a 
kinematic/dynamic model of the vehicle and relative 
observations between the vehicle and features, estimates 
the structure of the map and the vehicle’s position, 
velocity and orientation within that map. In this work, the 
Kalman Filter (KF) is used as the state estimator. 

3.1 Augmented Error State 

In complementary SLAM, the state is now defined as the 
error state of vehicle and map: 
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( ) [ ( ), ( )]T

v mk k k=δx δx δx                                               (2) 
 
The error state of the vehicle ( )v kδx  comprises the errors 
in the INS indicated position, velocity and attitude 
expressed in the navigation frame: 
 

( ) [ ( ), ( ), ( )]n n n T
v k k k k=δx δp δv δψ                                (3) 

 
The error state of the map ( )m kδx  also comprises the 
errors in 3D feature positions in the navigation frame. 
The size of state is also dynamically augmented with the 
new feature error after the initialisation process, 
 

1 2( ) [ ( ), ( ), , ( )]n n n T
m Nk k k k=δx δm δm δm ,                    (4) 

 
where N is the current number of registered features in 
the filter and each state consists of a 3D position error. 

3.2 SLAM Error Model 

The linearised SLAM system in discrete time can be 
written as 
 

( 1) ( ) ( ) ( ) ( )k k k k k+ = +δx F δx G w                                 (5) 
 
where ( )kδx is the error state vector, ( )kF  is the system 
transition matrix, ( )kG  is the system noise input matrix 
and ( )kw  is the system noise vector which represents the 
instrument noise with any un-modelled errors with noise 
strength ( )kQ . 
The continuous time SLAM/Inertial error model is based 
on misalignment angle dynamics and stationary feature 
model which is a random constant (Kim, 2004): 
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where bf  and bω  are acceleration and rotation rates 
measured from IMU, bδf  and bδω  are the associated 
errors in IMU measurement, n

bC  is the direction cosine 
matrix formed from the quaternion. The discrete-time 
model can now be obtained by expanding the exponential 
state transition function and approximating it to the first-
order term, and integrating the noise input during discrete 
sample time ( t∆ ), which result in, 
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with fδσ and δωσ  representing noise strengths of 
acceleration and rotation rate respectively. 

3.3 Observation model 

The linearised observation model can be obtained in 
terms of the observation residual, or measurement 
differences, ( )kδz  and the error states, ( )kδx , 
 

( ) ( ) ( ) ( )z k k k k= +δ H δx v                                            (10) 
 
with ( )kH  being the linearised observation Jacobian and 

( )kv  being the observation noise with noise strength 
matrix ( )kR . The error observations are generated by 
subtracting the measured quantity, ( )kz , from the INS 
predicted quantity ˆ( )kz , 
 

ˆ( ) ( ) ( )z k z k z k= −δ δ δ .                                                 (11) 
 
As there are two different types of observation in this 
system, that is a range/bearing/elevation observation and 
a GNSS position/velocity observation, they should be 
formulated separately. 

3.3.1 Range/Bearing/Elevation observation 

In range/bearing/elevation observation, the onboard 
sensor provides relative observations between vehicle and 
features. The non-linear observation equation relates 
these observations to the state as 

 
( ) ( ( ), ( ))k k k=z h x v ,                                                   (12) 

 
where ⋅h( )  is the non-linear observation model at time k , 
and kv( )  is the observation noise vector. Since the 
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observation model predicts the range, bearing, and 
elevation for the i-th feature, it is only a function of the i-
th feature and the vehicle state. Therefore Equation 8 can 
be further expressed as 
 

( ) ( ( ), ( ), ( ))i v mi ik k k k=z h x x v ,                                   (13) 
 
with ( )i kz  and ( )i kv  being the i-th observation and its 
associated additive noise in range, bearing and elevation 
with zero mean and variance of ( )kR . The feature 
position in the navigation frame is initialised from the 
sensor observation in the sensor frame and vehicle state 
as shown in Figure 3.  
 

 
Fig. 3 The range, bearing and elevation observations from the onboard 

sensor can be related to the location of the feature in the navigation 
frame through the platform's position and attitude. 

 
The initial feature position in the navigation frame is then 
computed 
 

( ) ( ) ( ) ( ) ( )n n n b n b s
i b bs b s smk k k k k= + +m p C p C C p                (14) 

 
where ( )b

bs kp  is the lever-arm offset of the sensor from 
the vehicle’s centre of gravity in the body frame, b

sC  is a 
direction cosine matrix which transforms the vector in the 
sensor frame (such as camera instalment axes) to the 
body frame, and ( )s

sm kp  is the relative position of the 
feature from the sensor expressed in the sensor frame 
which is computed from the observation: 
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with ρ , ϕ  and ϑ  being the range, bearing and elevation 
angle respectively, measured from the onboard sensor. 
Hence the predicted range, bearing and elevation between 

the vehicle and the i-th feature in Equation 8 can now be 
obtained by rearranging Equation 10, 
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The observation model is non-linear and has two 
composite functions; a coordinate transformation from 
the navigation frame to sensor frame, and transformation 
from Cartesian coordinates to polar coordinates. By 
calculating Jacobian of this equation, linearised discrete 
model is obtained: 
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If vision or radar information is available, ( )kδz  is 
formed by subtracting the range, bearing and elevation of 
the sensor from the INS indicated range, bearing and 
elevation, then it is fed to the integrated fusion filter to 
estimate the errors in vehicle and map. 

3.3.2 GNSS observation 

GNSS can provide several observables such as 
position/velocity, pseudorange/pseudorange-rate, or 
integrated carrier phase. If the position/velocity 
observation is used the observation model simply 
becomes a linear form with, 
 

2

2( ) , ( )m p

m v

k k
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= = ⎢ ⎥⎢ ⎥
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If GNSS information is available, ( )kδz  is formed by 
subtracting the position and velocity of the GNSS from 
the INS indicated position and velocity, then they are fed 
to the fusion filter to estimate the errors in vehicle and 
map. 
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3.4 K/F Prediction 

With the state transition and observation models defined 
in Equations 6 and 9, the estimation procedure can 
proceed. The state and its covariance are predicted using 
the process noise input. The state covariance is 
propagated using the state transition model and process 
noise matrix by, 
 

( | 1) ( ) ( 1 | 1)k k k k kδ− = − − =δx F x 0                          (20) 
( | 1) ( ) ( 1 | 1) ( ) ( ) ( ) ( )T Tk k k k k k k k k− = − − +P F P F G Q G  

                                                                                       
Not only is the linear prediction much simpler and 
computationally more efficient than in the direct SLAM 
approach, but furthermore the predicted error estimate, 

( | 1)k k −δx , is zero. This is because if one assumes that 
the only error in the vehicle and map states is zero mean 
Gaussian noise, then there is no error to propagate in the 
state prediction cycle, and the uncertainty in this 
assumption is provided in the covariance matrix 
propagation. 

3.5 K/F Estimation 

When an observation occurs, the state vector and its 
covariance are updated according to 
 

( | ) ( | 1) ( ) ( ) ( ) ( )k k k k k k k k= − + =δx δx W ν W ν         (21) 
( | ) ( | 1) ( ) ( ) ( )Tk k k k k k k= − −P P W S W .                   (22) 

 
where the innovation vector, Kalman weight, and 
innovation covariance are computed as, 
  

( ) ( ) ( ) ( | 1) ( )k k k k k kδ= − − =ν z H x z                          (23) 
1( ) ( | 1) ( ) ( )Tk k k k k−= −W P H S                                   (24) 

( ) ( ) ( | 1) ( ) ( )Tk k k k k k= − +S H P H R ,                         (25) 
 
where, for the same reason as in the prediction cycle, 

( ) ( | 1)k k k −H δx  is zero and hence is not explicitly 
computed. 

3.6 Feedback Error Correction 

Once the observation estimation has been processed 
successfully, the estimated errors are now fed to the 
external INS loop and the map for correction. The 
corrected position, ( )n

c kp , and velocity, ( )n
c kv , are 

obtained by subtracting the estimated errors, and The 
corrected attitude quaternion, ( )n

c kq , is obtained by pre-
multiplying the error quaternion to the current quaternion: 
 

( ) ( ) ( | )n n n
c k k k k= −p p δp                                           (26) 
( ) ( ) ( | )n n n

c k k k k= −v v δv                                           (27) 
( ) ( ) ( )n n n

c k k k= ⊗q δq q ,                                             (28) 
 
where the error quaternion ( )n

c kδq  is computed from the 
estimated misalignment angle:  
 

( ) 1 2 2 2
Tn

x y zk δψ δψ δψ⎡ ⎤≅ ⎣ ⎦δq .                 (29) 
 
The corrected map positions are directly obtained by 
subtracting the estimated map position errors from the 
current positions:  
 
( ) ( ) ( ) ( | )n n n

N c N Nk k k k= −m m δm .                              (30) 
 
Using these equations the complementary 
SLAM/GNSS/INS Kalman filter can recursively fulfil its 
cycle of prediction and estimation with the external INS 
loop and the map. 

3.6. Data Association and Feature Augmentation 

Data association is a process that finds out the 
correspondence between observations at time k  and 
features registered. Correct correspondence of the sensed 
feature observations to mapped features is essential for 
consistent map construction, and a single false match can 
invalidate the entire SLAM estimation process. 
Association validation is performed in observation space. 
As a statistical validation gate, the Normalised Innovation 
Square (NIS) is used to associate observations. The NIS 
( γ ) is computed by 
 

1( ) ( ) ( )T k k kγ −= ν S ν .                                                  (31) 
 
Given an innovation and its covariance with the 
assumption of Gaussian distribution, γ  forms a 2χ  (chi-
square) distribution. If γ  is less than a predefined 
threshold, then the observation and the feature that were 
used to form the innovation are associated. The threshold 
value is obtained from the standard 2χ  tables and is 
chosen based on the confidence level required. Thus for 
example, a 99.5% confidence level, and for a state vector 
which includes three states of range, bearing, and 
elevation, then the threshold is 12.8. The associated 
innovation is now used to update the state and covariance. 
If the feature is re-observed then the estimation cycle 
proceeds, otherwise it is a new feature and must be 
augmented into both the external map and the covariance 
matrix (Kim, 2004).  
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4. Results 

A simulation analysis is performed to verify the proposed 
algorithm for the Brumby UAV, developed in University 
of Sydney, under GNSS enabled and disabled scenarios. 

4.1 Simulation Environment 

A low-cost IMU is simulated with a vision as the range, 
bearing, and elevation sensor. The vision sensor used in 
the real system provides range information based on 
knowledge of target size; hence its range is simulated 
with large uncertainty. The simulation parameters 
obtained from the implemented actual sensor 
specifications are listed in Table I.  

Table 1. The parameters used in simulation 

Sensor Specification Parameter 
Sampling rate ( Hz) 50 
Accel noise ( 2/ /m s Hz ) 0.5 IMU 
Gyro noise ( / /s Hz° ) 0.5 
Frame rate (Hz) 25 
Field-Of-View ( ° ) ±15 
Estimated range error (m) ≥5 
Bearing noise ( ° ) 0.16 

Vision 

Elevation noise ( ° ) 0.12 
Position noise (m) 2.0 

GNSS Velocity noise (m/s) 0.5 
 
The flight vehicle undergoes three race-horse trajectories 
approximately 100m above the ground. The flight time is 
460 seconds and the average flight speed is 40m/s. There 
are 80 features placed on the ground. The vision 
observation is expressed in a camera frame, which is 
transformed to navigation frame to be processed in the 
SLAM node. The biases of the IMU are calibrated 
precisely using onboard inclinometers in the real 
implementation thus the biases are not explicitly 
modelled and studied in the simulation analysis and only 
white noise is modelled as in Table 1.  

4.2 GNSS Active Region: Map Building 

Figure 4 shows the SLAM/GNSS/INS estimated vehicle 
trajectory with the map built during the flight. The map 
uncertainty ellipsoids are also plotted with 10σ 
boundaries for the clarification. The vehicle takes off and 
flies over circuit-1 two rounds. It then transits to circuit-2 
and circuit-3. To simulate GNSS denied scenario, GNSS 
signal is disabled between 130 to 420 seconds from the 
start. After the vehicle taking off, GNSS signal is 
available until 130 seconds. The system behaves as a 

feature-tracking/mapping system in this mode. The error 
covariance of features around circuit-1 has relatively 
small value than features around other circuits. Figure 9 
presents the evolution of uncertainties of the vehicle and 
map. It can be clearly observed that the vehicle 
uncertainty was maintained within one metre until 130 
seconds, and the uncertainties of observed features are 
monotonically decreased. INS error is dominantly 
estimated from GNSS information, and the GNSS/INS 
blended navigation solution is used to track features. 
Contrary to the conventional airborne mapping systems, 
SLAM/GNSS/INS system maintains the cross-correlation 
information between the INS and map which can enhance 
the INS performance, and it is essential for the SLAM 
operation in GNSS denied conditions. 

4.3 GNSS Denied Region: SLAM/INS navigation 

In this condition, the SLAM/GNSS/INS system now 
behaves as a SLAM/INS system. INS and map errors are 
solely estimated from the feature observation. The pre-
registered feature during GNSS active period can be 
effectively used to estimate the INS and map errors as 
shown in Figures 5 to 8. After GNSS is disabled, INS 
uncertainties begin to increase which in turn increases the 
registered map uncertainties. The accumulated INS error 
is effectively removed from the closing-the-loop effect, 
which, in turn, eliminates the INS error embodied in the 
map. This can be observed in INS and map covariance 
plot as in Figure 13. Figures 10 and 11 show the 
evolution of uncertainty of INS velocity and attitude 
which are constrained effectively for extended period of 
time without GNSS aiding. This is due to the correlation 
structure between vehicle and the map in SLAM. The 
map uncertainty decreases monotonically and whenever 
the vehicle observes the feature, the vehicle error can be 
constrained effectively until GNSS signal is available 
again. Figures 12 shows the final map uncertainties built 
in GNSS enabled and disabled conditions. When GNSS 
signal is re-activated, the INS position and velocity errors 
are directly observed from the GNSS measurements, 
which, in-turn, improves the map accuracy via the 
vehicle-map correlation structure within SLAM filter. 
From these plots, it is obvious that the SLAM/GNSS/INS 
system can perform navigation and mapping for extended 
periods of time under GNSS denied conditions. 

5 Conclusions 

A new concept for UAV navigation is presented based on 
6DoF Simultaneous Localisation and Mapping (SLAM) 
algorithm, and augmenting it to GNSS/INS system. The 
simulation analysis illustrates that the SLAM system with 
a range, bearing, and elevation sensor can constraint the 
INS errors effectively, performing on-line map building 
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in GNSS denied and unknown terrain environments for 
extended periods of time. It can be applied to various 
navigation areas such as battlefield situations, urban 
canyons, indoor, or underwater. The real-time 
implementation on UAV platform using low-cost sensor 
are being tackled at the moment. 
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Figure 3. 2D position result of the SLAM augmented GNSS/INS 
navigation. UAV takes off  at (0,0) and flies three different race-horse 
tracks (circuit-1,2,3) in counter clock-wise. GNSS signal is disabled in 

circuit-1 and re-enabled at the end of in circuit-3. The vision is abaliable 
during whole flight time which is used for feature-mapping and SLAM. 
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Figure 4. Enhanced view of INS correction by the closing-the-loop 
effect of SLAM during GNSS disabled condition. 
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Figure 5. SLAM inclemently builds new map during GNSS disabled 
condition. 
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Figure 6. Enhanced view of INS correction by re-observing previously 
built map by GNSS. 
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Figure 7. GNSS is re-enabled and it corrects both INS and map error 
simultaneously. 
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Figure 8. Evolution of INS position uncertainty during flight. It can be 
observed that SLAM can bound the error growth during GNSS denied 
condition for extended period of time. GNSS is disabled at 130 second 

and re-enabled at 420 second 
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Figure 9. Evolution of INS velocity uncertainty during flight. 
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Figure 10. Evolution of INS attitude uncertainty during flight. 

 

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5
Final landmark uncertainty (1-σ) [m]

M
ap

 U
nc

er
ta

in
ty

 (m
)

Registered Landmark ID

North
East
Down

 

Figure 11. Final map uncertainty. The features registered during GNSS 
denied condition show larger uncertainties due to the accumulated INS 

error. 
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Figure 12. Evolution of INS position and map uncertainties in north 
direction. The map uncertainty converges to the lower limit 

monotonically.  
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