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Abstract. In this paper, the basic precise point 
positioning model has been reviewed. A recursive least 
square algorithm that separates the position coordinates 
and other parameters, such as ambiguities and 
tropospheric delays, is proposed for kinematic PPP 
applications. A test was carried out to test the method 
proposed in this paper, which made use of a GPS buoy 
equipped with a pressure and a tilt meter to monitor the 
sea level in Hong Kong. The initial results from 
kinematic PPP positioning compared with conventional 
kinematic positioning methods shows the accuracy of 
decimetre level positioning accuracy can be achieved by 
the PPP method. 
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1 Introduction 

Buoys equipped with GPS receivers have been used to 
measure water levels, atmospheric parameter and other 
physical conditions in sea, river or lake for the purposes 
of navigation, tide correction, the altimeter range 
calibration, ocean environment and pollution monitoring, 
flood control, and fisheries (Rocken et al. 1990, Key et al. 
1998, Moore et al. 2000). For high positioning accuracy 
applications, the relative positioning RTK technique is 
widely adopted in most of GPS buoy positioning. With 
the improvement of IGS orbit and clock error products, 
the precise point positioning (PPP) using IGS satellite 
orbit and clock products has been attracted more and 
more attention in resent years. It has been demonstrated 
that centimeter level positioning precision can be 
achieved for static points on land with the PPP 
techniques, which is comparable in quality with the 

conventional differential mode while the computational 
efficiency has been improved greatly for large scale GPS 
network (Zumberge et al., 1997; Huang et al., 2002). 
Decimeter level Kinematic PPP has also been developed 
in precise orbit determination or meteorological study in 
low earth orbit (LEO) spacecrafts such as 
TOPEX/POSEIDON and CHAMP mission (Bisnath et al. 
2001; Bock et al., 2002). The main algorithms and 
correction models for the PPP have been discussed by 
Kouba et al (2001) and the most widely used data type is 
un-difference ionosphere-free combination with phase 
and code measurements. An alternative data type used by 
some studies is code-phase ionosphere-free combination 
that aims at accelerating convergence speed (Gao et al., 
2001). In this paper, we will mainly concentrate on the 
kinematic PPP technique for GPS buoy to measure the 
sea level, tide and tropospheric parameter. The different 
combination of data types for the PPP, namely un-
difference (UD), satellite difference(SD), time 
difference(TD) and time-satellite difference(TSD), are 
presented in part 2 of this paper. A recursive least square 
algorithm for kinematic precise point positioning is 
presented in part 3. A test was carried out to test the 
method proposed in this paper, which made use of a GPS 
buoy equipped with a pressure and a tilt meter to monitor 
the sea level in Hong Kong. The kinematic PPP 
positioning solution is promising by comparing with 
conventional kinematic positioning methods. An initial 
field work is performed on Hong Kong island and data 
processing results are presented in part 4 while the 
conclusion and suggestions are given in the part 5. 

2 Basic PPP models 

The most widely used observation model for the Precise 
Point Positioning (PPP) is ionosphere-free un-difference 
combination (UD) for dual frequency phase or code data. 
To meet different positioning requirements, some simpler 
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combinations from UD can be formed. For simplicity, 
only carrier phase data are used and the correlation matrix 
form will not be presented here. For centimetre precision 
positioning, some related error corrections have to be 
applied, such as the relativity, satellite phase centre 
offset, satellite wind up, earth body tide, ocean load 
correction etc. ( Kouba,2000) which will not be discussed 
here. 

The UD data type is formed by combination of dual 
frequency ionosphere-free GPS data (Holfman-Wellenhof 
el al 2002, Kouba J et al 2001,Han et al 2001). It takes 
the form of  

ερ +++−+= )())()(()()( tTrNtdttdtcttUD kkk
r

kk  (1) 

where  

UD  - ionosphere-free carrier phase observation (m), 

ρ  - geocentric topocentric distance for satellite,     

N  - real valued ionosphere-free carrier phase ambiguity, 

)(tdtr  - clock error of receiver r,              

)(tdt k  - clock error of satellite k, 

)(tTr k  - tropospheric delay,  

t - epoch time, 

c - speed of light, 

r - subscript for receiver station identifier, 

k - superscript for satellite identifier, 

ε  - measurement noise. 

The tropospheric delay can be expressed as a function of 
zenith path delay and a mapping function 
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where )(zmk  is the mapping function, e.g. Neil mapping 
function (Niell, 1996), z is the zenith of the satellite and   

)(tTr  is the zenith tropospheric path delay.  

Therefore, parameters to be estimated with the UD model 
for the PPP positioning are station position coordinates 
(X,Y,Z), receiver clock )(tdtr , ambiguity N and 
tropospheric zenith path delay )(tTr . Whether in static or 
kinematic positioning, the receiver clock error is an epoch 
by epoch unknown parameter. The ambiguity is a real 
valued constant over time. As the troposphere changes 
very slowly over time, the tropospheric zenith path delay 
can be treated as a constant parameter within short period 
time, such as 1 hour interval or 15-minute interval. On 
the other side, because the receiver clock parameters and 

the ambiguity parameters are correlated, to estimate the 
absolute epoch by epoch receiver clock errors, code data 
has to be added to overcome the deficit of the normal 
equation matrix with a small weight. Otherwise a 
reference satellite has to be assigned in data processing, 
and in this way, only a relative receiver clock error can be 
obtained.   

Based on the UD model, some combinations can be 
formed as to eliminate some of common parameters in an 
epoch or between epochs. Namely the satellite difference 
(SD), time difference (TD) and time and satellite 
difference (TSD) can be formed between satellite k and l 
or between epochs i and j or both. The definitions of 
these combinations can be as: 

)()()( tUDtUDtSD klkl −=                                             (3)    
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From Eq. (3), the epoch by epoch receiver clock 
parameters are canceled out in the SD model. Only 
position, ambiguity and tropospheric parameters are 
remained. Compared with the UD model, the total 
parameters to be estimated reduced dramatically. While 
in the TD model (Eq. (4)), there are no ambiguity 
parameters left as the ambiguity is a constant over time as 
long as there are no cycle slips or loss of lock. The 
receiver clock parameters are transformed to clock 
difference between subsequent epochs. It can also be 
expressed as the clock difference relative to first epoch. 
Even though the ambiguities are removed in the TD 
model, the parameters to be estimated are far more than 
those in the SD model because of the epoch by epoch 
receiver clock difference parameters. In the TSD model 
(Eq. (5)), both receiver and ambiguity parameters are 
eliminated, only position components and tropospheric 
zenith delay parameters remain in the observation model. 
However, the TD and TSD models only provide distance 
change information (similar to Doppler measurements) 
and it may need longer periods for the position solution to 
be convergent. 

3 A recursive least square algorithm for kinematic 
PPP 

In our approach, we will use the UD and SD data models 
for the kinematic PPP data processing. The Kalman 
filtering method has been widely used for  kinematic GPS 
data processing. To apply the Kalman filtering 
algorithms, it required to establish a dynamic model to 
describe the relationship of the estimated parameters in 
different epochs and the constant velocity or acceleration 
models are commonly used. However, with some 
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applications, such as GPS buoys, the above models 
cannot be used to describe the motion of the GPS 
receiver. In this paper a recursive least square method is 
proposed to separate the ambiguity and position 
parameters. Assuming that there are two kinds of 
parameters to be estimated as X and Y, the observation 
equation can be written as 

 PVLBYAX ,+=+                                                      (6) 

where X is a vector for coordinate, receiver clock 
parameters which need to be estimated at each epoch. Y 
is a vector for ambiguity, zenith tropospheric parameter 
which does change rapidly between epochs. P is the 
weight matrix. The algorithm used in this paper tries to 
simplify the observation equation by eliminating 
parameter X in the observation equation (Eq. (6)). The 
normal equation for Eq. (6) can be written as:  
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Assuming PAANJ T1
11
−=                                            (10)                                                                                                             

we have 

BJIPJIBN TT )()(22 −−=                                       (11)                                                                           

with BJIB )( −=                                                        (12)                                                                                        

Then we have new normal equation 

PLBYBPB TT =                       

This is equivalent to that we have a new observation 
equation 

PULYB ,+=                                                              (13)                                                                         

In Eq. (13) only the parameter Y, such as ambiguity and 
tropospheric parameters are included while coordinate 
parameter X is eliminated. On the other hand, the 
observable L and its weight matrix keep unchanged. 
Therefore, in our algorithms, we will estimate the 
parameter Y first, together with a simple dynamic model 
to describe the ambiguity and tropospheric delays, by 
applying a Kalman filter. After parameter Y is 
determined, the parameter X (i.e. the station coordinates 
and receiver clock errors) can be estimated using the 
following equation. 

)( 12
1
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4 Data processing results 

In this paper, two sets of data are used to demonstrate the 
positioning results using the algorithm proposed in the 
section 3. The first data set is static GPS data observed in 
Hong Kong. The data were observed on March 4, 2001 in 
Hong Kong GPS active network, totally 24 hours with 5 
seconds observation interval. The data is processing in 
both state mode (to estimate one solution with all data 
available) and the kinematic mode (to estimate position 
every epoch). Figure 1 position errors in 3D with the 
static mode. It can be seen that it requires about 2 hours 
for the coordinate errors to reduce to less than 0.1 m. 
With 24 hour data, the coordinate difference compared 
with the known coordinate are 0.008m, -0.028m and -
0.001m in north, east and height components. In the 
kinematic mode, we solved for the ambiguities and 
tropospheric delay parameters first. Then the position 
coordinates are solved every epoch in a 5 second interval 
using Eq. (14). In data processing, the IGS precise orbit 
and 5 min satellite clock error data are used. As in the 
kinematic mode 5 second interval data is used, we use a 
linear interpolation of 5 minute satellite clock error to get 
the satellite clock errors at the epoch. Figure 2(a) shows 
the position errors with 5 second interval. The position 
RMS errors with 5 second interval data are 0.037m, 0.043 
and 0.104m in North, East and Height component 
respectively. To assess the errors caused by the 
interpolation of satellite clock errors, we process the data 
again with 5 minute interval, with the epoch we have 
exact satellite clock errors as IGS provided. The 
positioning errors are shown in Figure 2(b). Comparing 
Figures 2(a) and (2(b), it can be seen that position errors 
with the epochs that have the exact IGS clock error 
(Figure 2(b)) are much less the solution with the 
interpolated satellite clock error (Figure 2(a)). The 
position RMS errors with the solution that is without 
using the clock interpolation are 0.021m,0.030m and 
0.055m in North, East and Height component 
respectively. This clearly shows that the satellite clock 
accuracy plays an important role on the PPP method. 

To test the overall performance of the kinematic PPP 
method in a kinematic environment, we use GPS buoy 
data with 1s data interval, from 22 to 24 October 2004, at 
Repulse Bay, Hong Kong island. Two Leica SR530 dual 
frequency GPS receivers were used, one is set on shore as 
a fixed station for differential positioning test and another 
receiver is installed on a buoy in the sea. (Figure 3).  

Firstly we estimate the position of GPS buoy with the 
relative position mode. As the reference station is very 
close to the GPS buoy (a few hundred metres), most GPS 
measurement errors can be cancelled out by the relative 
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position mode. The position accuracy of centimetre level 
can be easily achieved with this method. In this paper, we 
will use the solution from relative positioning mode as 
the baseline to evaluate the accuracy of the kinematic 
PPP method. Figure 4 shows the height variation of the 
GPS buoy from the relative positioning mode. The dark 
black line is the moving average of 5 minute position  

 
 

Fig. 1 Coordinate components convergence processing 

 

 
Figure 2(a) Kinematic PPP results with interpolated satellite clock 

errors 

 
 

Fig. 2(b) Kinematic PPP results with the IGS satelite clock errors 

 
Figure 3(a) The location of the reference station 

 
Fig. 3(b) The location of the GPS buoy 

results, which may represent the tide variation over the 
two days, while the light line represents the sea waves. In 
general, the mean sea surface observed by GPS is quite 
smooth, except two abrupt changes happened (see Figure 
4) and that are due to the periods few satellites were 
observed with large DOP value. 

Then we estimate the position of the buoy using the 
kinematic PPP method proposed in this paper. The IGS 
rapid products (satellite orbit and clock errors) with the 
update rate of 15 minutes for orbit and 5 minutes for 
clock errors are used in data processing, as the IGS final 
products will only be available after a week of the 
observation. Figure 5 shows the height of the buoy from 
the kinematic PPP method by using 1 second GPS data 
from buoy only. The satellite clock errors are interpolated 
to every second by the 5 minute interval clock errors. The 
overall tide trend can be seen in Figure 5. However the 
results are much noisier compared with the relative 
positioning mode (Figure 4).  

Figure 6 compares the height difference between the 
relative mode and the PPP mode with 30 second interval. 
The errors of the PPP mode are quite large to over 0.5 m, 
with the RMS difference of 20 cm.  Similarly, we process 
the GPS buoy data again with 5 minute update interval 
with the epoch exactly the same as the IGS clock error 
update. The height difference between the relative mode 
and the PPP mode is shown in Figure 7. The positioning 
differences are less than 20 cm, with an RMS difference 
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of 12 cm. This confirms again that accuracy satellite 
clock error estimation is important to the PPP data 
processing.  

 Fig. 4 Height result for GPS buoy by kinematic DGPS 

 
Fig. 5 Height result for GPS buoy by kinematic PPP with IGS rapid 

orbit 

 
Fig. 6 Height difference between the PPP and relative mode with 30 

second interval 

 
Fig. 7 Height difference between the PPP and relative mode with 5 

minutes interval 

5 Conclusion and suggestions 

In this paper, the basic precise point positioning (PPP) 
models reviewed and a new algorithm for kinematic PPP 
is proposed. The key of this algorithm is to separate 
parameters with their property on the change with time. 
We will estimate the parameters that des not change 
much with the time first (such as ambiguity and 
tropospheric delays). And then the receiver coordinate 
swill be calculated by removing ambiguities and 
troposheric delays. The experiment results shows that this 
algorithm can effectively separate the position parameters 
(large changes with time) and those parameters with slow 
changes (tropospheric delays) or no changes 
(ambiguities) and the decimetre level of positioning 
accuracy can be achieved with this method.  The 
experiment results also show that the quality of satellite 
clock errors is important for the kinematic PPP mode. In 
the data processing, with the interpolation of 5 minute 
satellite clock error data, the positioning errors are almost 
doubled for both the static and kinematic cases. Thus, for 
the satellite clock errors, we should avoid any 
interpolation from the IGS products. Currently, the IGS 
already started to provide 30 second interval data and 
experiments have been carried out to provide 1 second 
interval data. We expect the positioning accuracy can be 
improved by using these products. 

This paper only shows the preliminary results from the 
experimental data. Further studies are required to 
improve the positioning accuracy. Firstly we will process 
the data again with final IGS orbit and high rate satellite 
clock production to examine the improvement on 
positioning accuracy. Secondly, compared with figures 4 
and 5, there are a number of positioning jumps in figure 5 
with the kinematic method. These are mainly due to the 
fact that the change of satellite observed (dropped or new 
satellites). We will also try to use the previous position 
and satellite ambiguities to constrain the solution to 
reduce the size of the discontinuity on position. 
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