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Pseudo-
lo
k biases for pre
ise point positioning.The algebrai
 approa
hA. Lannes1 S. Gratton2 S. Durand3

1CNRS/Supele
/Univ Paris-Sud (Fran
e)
2UPS/INPT-IRIT/Enseeiht (Fran
e)
3ESGT/CNAM (Fran
e)Abstra
tAs shown in a 
ompanion paper devoted to GNSS net-works in algebrai
 graph theory, any (real- or) integer-valued fun
tion taking its values on the edges of theGNSS graph 
an be regarded as the sum of three (real- or)integer-valued fun
tions: a fun
tion taking its values onthe re
eiver verti
es of this graph, another one on thesatellite verti
es, and the last one, the 
losure-delay (CD)fun
tion, taking its values on the loop-
losure edges. Fora given spanning tree, this de
omposition is unique. Thenotion of 
losure delay generalizes that of double di�er-en
e (DD). In this framework, parti
ular satellite biases
an be estimated and broad
asted to the network usersfor their pre
ise point positioning (PPP). For example,in the 
ase of large networks, ea
h of these biases in-
ludes three (or four) terms: a satellite-
lo
k term, asatellite time-group term, a satellite ionospheri
 term,and (for the phase) a satellite integer ambiguity multi-plied by the 
orresponding wavelength. The form of thePPP equations to be solved by the network user is thenthe same as that of the traditional PPP equations. Assoon as the CD ambiguities are �xed and validated, es-timates of these �oat biases 
an be obtained. The mainresult of this paper is that no other ambiguity is thento be �xed, hen
e a better e�
ien
y. In parti
ular, inthis approa
h, it is not ne
essary to �x the 
arrier-phaseambiguities, a problem whi
h 
annot be easily solved.Indeed, as shown in this paper, when the CD ambigui-ties are �xed (or when a maximum set of DD ambiguitiesis �xed), the remaining �oat problem is not of full rank.Keywords. GNSS networks. Clo
k biases. RTK. PPP.1. Introdu
tionThe global positioning te
hniques are based on the fol-lowing observational equations. For ea
h frequen
y ν, forea
h re
eiver-satellite pair (i, j) ≡ (ri , sj), and at ea
h

epo
h t, the 
arrier-phase and 
ode data are respe
tivelyof the form (see, e.g., Teunissen and Kleusberg 1998)
Φν,t(i, j) = ρt(i, j) + Tt(i, j) − κνIt(i, j)

+ [f
(r)
φ;t(i) − f

(s)
φ;t(j)] − κν [g

(r)
φ;t(i) − g

(s)
φ;t(j)]

+ λνNν(i, j) + εφ;ν,t(i, j)

(1)
Pν,t(i, j) = ρt(i, j) + Tt(i, j) + κνIt(i, j)

+ [f
(r)
p;t (i) − f

(s)
p;t (j)] + κν [g

(r)
p;t(i) − g

(s)
p;t(j)]

+ εp;ν,t(i, j)

(2)In these equations, whi
h are expressed in length units,
ρt(i, j) is the re
eiver-satellite range: the distan
e be-tween satellite sj (at the time t − τ where the signal isemitted) and re
eiver ri (at the time t of its re
eption);
Tt(i, j) and It(i, j) are the tropospheri
 and ionospheri
delays, respe
tively. Here,
κν = ν2

1/ν
2 = λ2

ν/λ
2
1 (3)The λν 's denote the wavelengths of the 
arrier waves in-volved in the observational pro
ess. Note that κν1 = 1.The integers Nν(i, j) are the integer 
arrier-phase ambi-guities: Nν(i, j) ∈ Z.The instrumental biases and the 
lo
k errors dependingonly on ri and t are lumped together in the `extendedre
eiver-
lo
k biases' f (r)

φ;t(i), f
(r)
p;t (i). Likewise, the in-strumental biases and the 
lo
k errors depending only on

sj and t are lumped together in the `extended satellite-
lo
k biases' f (s)
φ;t(j), f

(s)
p;t (j). Similarly, g(r)

φ;t(i), g
(r)
p;t(i)and g(s)

φ;t(j), g
(s)
p;t(j) denote the biases involved in the def-inition of the time-group delays.In this model, the expe
tation values of the noise terms

εφ;ν,t(i, j) and εp;ν,t(i, j) are supposed to be zero. Wealso assume that these noises are not mutually 
orre-lated.
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h 69In this paper, we 
onsider a GNSS network and par-ti
ular satellite biases. Estimates of these pseudo-
lo
kbiases are broad
asted to the network users for their pre-
ise point positioning (PPP). The theoreti
al frameworkis presented in Se
t. 2. On
e the linearization aspe
tshave been spe
i�ed (Se
t. 3), the 
orresponding approa
his then introdu
ed (Se
t. 4). The similarities and di�er-en
es with other related approa
hes are examined in thatframework. Se
tion 5 is devoted to the optimization te
h-nique that provides the pseudo-
lo
k biases in question.Some 
omments on the key points of our 
ontributionare to be found in Se
t. 6.2. Theoreti
al FrameworkLet us 
onsider a GNSS network in
luding m stations,and thereby m multifrequen
y re
eivers ri. The num-ber of satellites sj involved in the observational pro
essover some time interval [t1, tℓ] is denoted by n. The`observational grid' of the network is therefore a grid Goin
luding m lines, n 
olumns, and mn points; see Fig. 1.For example, in the 
ase of large networks, m and n areof the order of 100 and 32, respe
tively. A fun
tion su
has Φν,tk or ρtk , with k in [1, ℓ], takes its values on somepoints (i, j) of Go. These points form a subset of Godenoted by Gk: the `GNSS grid' of epo
h tk. When no
onfusion may arise, subs
ript k is omitted: G ≡ Gk.The ith line of G is denoted by Li:
Li := {j : (i, j) ∈ G, i being �xed} (4)Likewise, the set
Cj := {i : (i, j) ∈ G, j being �xed} (5)
hara
terizes the jth 
olumn of G.2.1. GNSS graph. Edge-delay spa
eIn the example presented in the upper part of Fig. 1, thepoints (i, j) of G are shown as bla
k dots. As illustratedin the lower part of this �gure, these points 
orrespond tothe `edges' (ri , sj) of the GNSS graph to be 
onsidered;

E denotes the set of its edges; ne is their number. There
eivers and the satellites involved in the de�nition ofthese edges de�ne the `verti
es' of this graph; V denotesthe set of its verti
es, and nv their number:
nv = m+ n (6)A GNSS graph G is therefore de�ned by the pair (V , E):

G ≡ G(V , E). For simpli
ity, we now assume that G is
onne
ted (e.g., Biggs 1996): given any two verti
es of V ,there exists a path of edges of E 
onne
ting these verti
es.(If this is not the 
ase, G is redu
ed to its main 
onne
ted
omponent; G is then redu
ed 
onsequently.)A fun
tion ϑ taking its values on G, and thereby on E ,
an be regarded as a ve
tor of E := R
ne . The values of ϑon G are then regarded as the 
omponents of ϑ in thestandard basis of this edge-delay spa
e.
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Figure 1: GNSS grid G and GNSS graph G.In the example shown here, the observationalgrid Go in
ludes 12 points: m = 3, n = 4.The GNSS grid of epo
h tk, G ≡ Gk, in
ludes
9 points; these points are shown as bla
kdots. The 
orresponding graph, G ≡ Gk, in-
ludes 7 verti
es and 9 edges: nv = m+ n = 7,
ne = 9. The data 
orresponding to the re
eiver-satellite pairs (r1, s2), (r2, s3) and (r3, s1) aremissing.2.2. GNSS spanning tree and loopsAs illustrated in Fig. 2, a spanning tree of G ≡ G(V , E)is a subgraph Gst ≡ G(V , Est) formed by nv verti
es and

nv − 1 edges, with no `
y
le' in it. Here, `
y
le' is used inthe sense de�ned in algebrai
 graph theory (Biggs 1996).In the GNSS 
ommunity, to avoid any 
onfusion withthe usual notion of wave 
y
le, it is not forbidden tosubstitute the term of `loop' for that of `
y
le.' In this
ontext, the number of loops de�ned through a given�xed (but arbitrary) spanning tree is the number of edgesof E that do not lie in Est . These edges,
c(q) := (ri(q) , sj(q)) (7)are said to be `loop-
losure edges' (see Fig. 2). Theirnumber is denoted by nc:
nc = ne − (nv − 1) (nv = m+ n, ne ≤ mn) (8)To sele
t a GNSS spanning tree, the edges of E are �rstordered somehow. The 
orresponding sequen
e is of theform
e(q) := (riq , sjq) (q = 1, . . . , ne)The algorithm is the following: set q = 0, nst = 0, and

Est = ∅ (the empty set). Then,(1) If nst = nv − 1, terminate the pro
ess; otherwise,set q set

= q + 1.(2) When the verti
es of e(q) are not 
onne
ted viaedges of Est, set Est
set

= Est ∪ {e(q)} and nst
set

= nst + 1;then go to step (1).
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Figure 2: GNSS spanning tree and loops. Thebla
k edges of G (the graph introdu
ed in Fig. 1)are the edges of the sele
ted spanning tree Gst.The points of the 
orresponding subgrid Gst areshown as bla
k dots. The remaining points of G(the red dots of G) 
orrespond to the loop-
losureedges (the red edges of G). We then have one loopof order 4, and 2 loops of order 6: (r2 , s4 , r1 , s1),
(r3, s3, r1, s1, r2, s2) and (r3, s4, r1, s1, r2, s2).These orders are shown as red numbers.The subgrid of G 
orresponding to the edges of Est isdenoted by Gst. By 
onstru
tion, the spanning tree thusfound depends on how the edges are ordered.Example 2.1. To show, in 
on
rete manner, how thisalgorithm works, we now 
onsider its a
tion on the gridGof Fig. 2, its points being ordered line by line.The points of the �rst line of G, the points (1, 1), (1, 3)and (1, 4), de�ne the �rst 3 edges of Est:

Est
set

= {(r1, s1), (r1, s3), (r1, s4)} (nst = 3)By 
onstru
tion, four verti
es of G are then 
onne
ted:
r1, s1, s3 and s4.The next point of G, the �rst point of line 2, is asso
iatedwith edge (r2, s1). As r2 and s1 are not 
onne
ted viaedges of Est, this edge 
annot be a loop-
losure edge. Wetherefore set
Est

set

= Est ∪ {(r2, s1)} (nst = 4)Five verti
es are then 
onne
ted: r1, s1, s3, s4 and r2.The next point of line 2 is asso
iated with edge (r2, s2).As r2 and s2 are not 
onne
ted via edges of Est, we set
Est

set

= Est ∪ {(r2, s2)} (nst = 5)Six verti
es are then 
onne
ted: r1, s1, s3, s4, r2 and s2.The next point of G, the last point of line 2, is asso
iatedwith edge (r2, s4). As r2 and s4 are already 
onne
ted,this edge 
loses a loop with some edges of Est. As a result,this edge is the �rst loop-
losure edge: c(1) = (r2, s4);see Eq. (7). The 
orresponding loop, (r2 , s4 , r1 , s1), isof order 4: it in
ludes 4 edges (see Fig. 2).

The next point of G, the se
ond point of line 3, is asso
i-ated with edge (r3, s2). As r3 and s2 are not 
onne
tedvia edges of Est, we then set
Est

set

= Est ∪ {(r3, s2)} (nst = 6)As all the verti
es of E are then 
onne
ted, the algorithmstops: Est is then 
ompletely de�ned.The remaining points of line 3 therefore de�ne two loop-
losure edges: c(2) = (r3, s3) and c(3) = (r3, s4). Theseloops are of order 6; see Fig. 2.Remark 2.1. In the spe
ial 
ase of the graph shownin Fig. 2, there exist parti
ular spanning trees for whi
hthe three loops are of order 4. As the 
hoi
e of the span-ning tree is arbitrary, it is not useful to sear
h for su
hspanning trees.Remark 2.2. In Example 2.1, the points of G are or-dered line by line. In fa
t, to handle some graph tran-sitions (i.e., some s
enario 
hanges), one may be led toorder them in a more subtle manner; see Se
t. 7.4.3 inLannes and Gratton 2009.2.3. Referen
e propertiesThe properties presented in this se
tion are established inSe
t. 4.2 of Lannes and Gratton 2009. We �rst introdu
ethe notion of `bias-delay spa
e.'Bias-delay spa
e. The subspa
e of E whose fun
-tions β are of the form
β(i, j) = δ[r](i) + δ[s](j) with δ[s](1) = 0 (9)is denoted by F . This subspa
e 
an be referred to asthe bias-delay spa
e. By de�nition, the `re
eiver-delayspa
e' F [r] is the subspa
e of F whose fun
tions β dependonly on i: β(i, j) = δ[r](i). Similarly, the `satellite-delayspa
e' F [s] is the subspa
e of F whose fun
tions are of theform β(i, j) = δ[s](j) with δ[s](1) = 0. By 
onstru
tion,
F is the `oblique dire
t sum' of F [r] and F [s]:
F = F [r] + F [s] F [r] ∩ F [s] = {0}We thus have
dimF [r] = m dimF [s] = n− 1 (10)
dimF = dimF [r] + dimF [s] = nv − 1 (11)Property 1. Given any edge-delay fun
tion ϑ taking itsvalues on G, for ea
h spanning tree Gst of G, there existsa unique set of re
eiver and satellite delays
{

ϑ[r](i)
}m

i=1
∪

{

ϑ[s](j)
}n

j=1
with ϑ[s](1) = 0su
h that ϑ(i, j) = ϑ[r](i) + ϑ[s](j) on the points of Gst.More 
on
retely, the following pro
ess provides these de-lays in a re
ursive manner; for further details, see Lannesand Gratton 2009.
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ursive di�erential pro
ess. Set ϑ[s](1) = 0; then,span the points of Gst line by line (see Fig. 2 or Fig. 3).For ea
h point (i, j) thus en
ountered, then pro
eed asfollows.If ϑ[s](j) has already been �xed, and ϑ[r](i) is not �xedyet, set
ϑ[r](i) = ϑ(i, j) − ϑ[s](j)If ϑ[r](i) has already been �xed, and ϑ[s](j) is not �xedyet, set
ϑ[s](j) = ϑ(i, j) − ϑ[r](i)To obtain all these delays, Gst is to be spanned in thisway as many times as required. It is important to pointout that the only operations involved in this pro
ess aredi�eren
es. As a result, if ϑ is an integer-valued fun
tion,the re
eiver and satellite delays ϑ[r](i) and ϑ[s](j) lie in Z.Example 2.2. To illustrate this re
ursive di�erentialpro
ess, we now follow its a
tion on the gridGst of Fig. 2.As ϑ[s](1) is nought, we then obtain su

essively:
ϑ[r](1) = ϑ(1, 1) − ϑ[s](1) = ϑ(1, 1)

ϑ[s](3) = ϑ(1, 3) − ϑ[r](1)

ϑ[s](4) = ϑ(1, 4) − ϑ[r](1)

ϑ[r](2) = ϑ(2, 1) − ϑ[s](1) = ϑ(2, 1)

ϑ[s](2) = ϑ(2, 2) − ϑ[r](2)

ϑ[r](3) = ϑ(3, 2) − ϑ[s](2)Closure delays. A

ording to Property 1, the quanti-ties
ϑ[cd](i, j) := ϑ(i, j) −

[

ϑ[r](i) + ϑ[s](j)
] (12)vanish on the points of Gst. The values of ϑ[cd] of interestare therefore de�ned on the remaining points of G, i.e.,on the `CD subgrid'

Gcd := {(i, j) ∈ G : (i, j) /∈ Gst} (13)Clearly, Gcd in
ludes nc loop-
losure points; see Eq. (8)and Figs. 2 & 3. The quantities ϑ[cd](i, j) on Gcd 
antherefore be referred to as the `
losure delays' of ϑ, hen
ethe notation 
d or CD.The notion of 
losure delay generalizes that of doubledi�eren
e. In fa
t, for a given loop, the 
losure delayof ϑ is the `alternate algebrai
 sum' of the values of ϑalong the edges of that loop. For example, with regardto Fig. 3, the CD ambiguity N [cd]
ν (3, 3) is the alternatesum

Nν(3, 3)−Nν(3, 2)+Nν(2, 2)−Nν (2, 1)+Nν(1, 1)−Nν(1, 3)As 
lari�ed in a paper to appear in the Journal of Geodesy(Lannes and Teunissen 2010/11), the CD ambiguities arethe `estimable fun
tions of 
arrier-wave ambiguities' ofde Jonge 1998. These fun
tions were introdu
ed to 
or-re
t for rank defe
ts of the undi�eren
ed equations; seeTeunissen 1984.
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Figure 3: Interest of the CD approa
h. In the s
e-nario 
onsidered here, G in
ludes 15 points. Thesele
ted spanning tree is built by spanning thepoints of G line by line. The points of Gst areshown as bla
k dots. The red ones are the 
or-responding loop-
losure points; see Fig. 2. Withregard to the sele
ted spanning tree, we then have
3 loops of order 4, and 3 loops of order 6. Here, the`maximum number of independent double di�er-en
es' is equal to 5; for further details see Eq. (46).In the 
orresponding DD approa
h, the data of gridpoint (1, 3) are not used; see Fig. 4. The CD ap-proa
h is therefore preferable sin
e all the data arethen pro
essed.Property 2. Any edge-delay fun
tion ϑ taking its valueson G 
an be de
omposed in the form

ϑ(i, j) = ϑ[r](i) + ϑ[s](j) + ϑ[cd](i, j)For a given spanning tree, this de
omposition is unique.This property is a simple trans
ription of Eq. (12). Theuniqueness of this de
omposition results from Property 1.Example 2.3. With regard to the GNSS grid of Fig. 2,let us 
onsider (for simpli
ity) the ambiguity fun
tion
N :

2 ∗ 1 −1

−1 1 ∗ 1

∗ −2 2 −1The re
ursive di�erential pro
ess of Example 2.2 appliedto this fun
tion yields the following 
omponents:
N [r] :

2 ∗ 2 2

−1 −1 ∗ −1

∗ −4 −4 −4

N [s] :

0 ∗ −1 −3

0 2 ∗ −3

∗ 2 −1 −3

N [cd] :

0 ∗ 0 0

0 0 ∗ 5

∗ 0 7 6
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hange the sele
ted spanning tree (seeRemark 2.2). The CD ambiguity variables are then trans-formed a

ordingly. The 
orresponding linear operators
an easily be determined.Remark 2.4. It 
an be shown that the maximum num-ber of independent double di�eren
es is less than or equalto nc; see Lannes and Teunissen 2010/11. An exam-ple where this number is stri
tly less than nc is givenin Fig. 3.3. LinearizationFor 
larity, let us now substitute k for tk. In most 
asesen
ountered in pra
ti
e, the fun
tional variable ρk 
anbe linearly expanded in terms of other variables. In thegeneral 
ase, some of the latter depend on k, while othersnot; see, e.g., Feng and Li 2008. In other terms, the �rstones are `lo
al' variables, while the others are `global'with however possible transitions from time to time.More pre
isely, the re
eiver-satellite range 
an be ex-panded in the form
ρk(i, j) = ρ0

k(i, j) +
∑3

p=1 ck;p(i, j)u
(ξ)
i,k;p

+
∑

q
dk;q(i, j) vq

(14)Here, ρ0
k(i, j) is the nominal value of ρk(i, j); u(ξ)

i,k;p is the
pth in
rement variable of (the position of) re
eiver ri atepo
h k. Note that ck;p(i, j) is a dire
tion-
osine fun
-tion; see, e.g., Eq. (14) in Lannes and Gratton 2008.The u

(ξ)
i,k;p's are the position 
omponents of the lo
alvariable uk. When the positions of some re
eivers areexpanded as `pie
ewise polynomial fun
tions' of t, theparameters involved in these expansions appear in thede�nition of the global variables vq; and likewise whenorbital parameters are to be re�ned. Clearly, the vq'sare 
omponents of some global variable v. The fun
-tions dk;q(i, j) 
hara
terize the 
orresponding global ex-pansion term at epo
h k.Similarly, in most 
ases en
ountered in pra
ti
e, one mayrefer to a tropospheri
 model of the form

Tk(i, j) = bk(i, j)u
(τ)
i,k (15)where u(τ)

i,k is the zenith tropospheri
 variable of re
eiver riat epo
h k; for further details on this point, see Ge etal 2006. The u(τ)
i,k;p's are the tropospheri
 
omponents ofthe lo
al variable uk. Like ck;p(i, j), bk(i, j) is a knownfun
tion whi
h takes into a

ount the re
eiver-satellitegeometry.For simpli
itly, we now restri
t ourselves to the 
ase oflarge networks. In that 
ase, the fun
tions bk and ck;pe�e
tively depend on i and j.4. The Algebrai
 Approa
h: SurveyWe �rst introdu
e the referen
e equations of our ap-proa
h: Se
t. 4.1. We then give a survey of the methods

to be implemented for solving the problem: Se
t. 4.2.The related PPP equations are spe
i�ed in Se
t. 4.3. We�nally make some 
omments on the similarities and thedi�eren
es with other related approa
hes: Se
t. 4.4.4.1. Referen
e equationsFor µ = φ or p, let us set
∣

∣

∣

∣

∣

∣

δ
[r]
µ;ν,k(i) := δ

(r)
µ;ν,k(i) + δ

(s)
µ;ν,k(1)

δ
[s]
µ;ν,k(j) := δ

(s)
µ;ν,k(j) − δ

(s)
µ;ν,k(1)

(16)in whi
h
∣

∣

∣

∣

∣

∣

δ
(r)
φ;ν,k(i) := [f

(r)
φ;k(i) − κνg

(r)
φ;k(i)]

δ
(s)
φ;ν,k(j) := −[f

(s)
φ;k(j) − κνg

(s)
φ;k(j)]

(17)and
∣

∣

∣

∣

∣

∣

δ
(r)
p;ν,k(i) := [f

(r)
p;k(i) + κνg

(r)
p;k(i)]

δ
(s)
p;ν,k(j) := −[f

(s)
p;k(j) + κνg

(s)
p;k(j)]

(18)By 
onstru
tion (see Eq. (16)), we have δ[s]µ;ν,k(1) = 0.The linearized observational equations 
an then be writ-ten in the forms (see Eqs. (1), (2), (14) and (15))
Φ0
ν,k(i, j) =

∑3
p=1 ck;p(i, j)u

(ξ)
i,k;p +

∑

q
dk;q(i, j) vq

+ bk(i, j)u
(τ)
i,k − κνIk(i, j)

+ [δ
[r]
φ;ν,k(i) + δ

[s]
µ;ν,k(j)]

+ λνNν(i, j) + εφ;ν,k(i, j)

(19)
P 0
ν,k(i, j) =

∑3
p=1 ck;p(i, j)u

(ξ)
i,k;p +

∑

q
dk;q(i, j) vq

+ bk(i, j)u
(τ)
i,k + κνIk(i, j)

+ [δ
[r]
p;ν,k(i) + δ

[s]
p;ν,k(j)] + εp;ν,k(i, j)

(20)where
Φ0
ν,k(i, j) := Φν,k(i, j) − ρ0

k(i, j) (21)
P 0
ν,k(i, j) := Pν,k(i, j) − ρ0

k(i, j) (22)The algebrai
 approa
h presented in this paper is basedon Property 2. With regard to the sele
ted spanningtree, the 
arrier-phase ambiguity fun
tions are then de-
omposed in the form
Nν(i, j) = N [r]

ν (i) +N [s]
ν (j) +N [cd]

ν (i, j) (on G) (23)We are then led to introdu
e the quantities
∣

∣

∣

∣

∣

∣

δ̄
[r]
φ;ν,k(i) := δ

[r]
φ;ν,k(i) + λνN

[r]
ν (i)

δ̄
[s]
φ;ν,k(j) := δ

[s]
φ;ν,k(j) + λνN

[s]
ν (j)

(24)As N [s]
ν (1) = 0, we have δ̄[s]φ;ν,k(1) = 0.
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ise point positioning. The algebrai
 approa
h 73In the absen
e of reliable ionospheri
 model, the iono-spheri
 delays are also de
omposed:
Ik(i, j) = I

[r]
k (i) + I

[s]
k (j) + I

[cd]
k (i, j) (on G) (25)The 
lo
k biases to be 
onsidered are then of the form

∣

∣

∣

∣

∣

∣

δ̃
[r]
φ;ν,k(i) := δ̄

[r]
φ;ν,k(i) − κνI

[r]
k (i)

δ̃
[s]
φ;ν,k(j) := δ̄

[s]
φ;ν,k(j) − κνI

[s]
k (j)

(26)and
∣

∣

∣

∣

∣

∣

δ̃
[r]
p;ν,k(i) := δ

[r]
p;ν,k(i) + κνI

[r]
k (i)

δ̃
[s]
p;ν,k(j) := δ

[s]
p;ν,k(j) + κνI

[s]
k (j)

(27)Again, as I [s]
k (1) = 0, we have δ̃[s]µ;ν,k(1) = 0. The phaseand 
ode equations to be 
onsidered 
an then be writtenin the respe
tive forms

Φ0
ν,k(i, j) =

∑3
p=1 ck;p(i, j)u

(ξ)
i,k;p +

∑

q
dk;q(i, j) vq

+ bk(i, j)u
(τ)
i,k − κνI

[cd]
k (i, j)

+ λνN
[cd]
ν (i, j) + β̃φ;ν,k(i, j) + εφ;ν,k(i, j)

(28)
P 0
ν,k(i, j) =

∑3
p=1 ck;p(i, j)u

(ξ)
i,k;p +

∑

q
dk;q(i, j) vq

+ bk(i, j)u
(τ)
i,k + κνI

[cd]
k (i, j)

+ β̃p;ν,k(i, j) + εp;ν,k(i, j)

(29)where, for µ = φ or p (see Eq. (9)),
β̃µ;ν,k(i, j) := δ̃

[r]
µ;ν,k(i) + δ̃

[s]
µ;ν,k(j) (30)When three 
arrier waves are available, this approa
h isparti
ularly re
ommended. Indeed, no ionospheri
 modelis then introdu
ed.4.2. Solution of the problemThe analysis presented in Lannes and Gratton (2009) 
anbe transposed to Eqs. (28) and (29). The lo
al fun
tionalvariables β̃φ;ν,k and β̃p;ν,k are then regarded as parti
ularvariables of the problem. The other lo
al variables u(ξ)

i,k;p,
u

(τ)
i,k and I [cd]

k (i, j) on Gcd are lumped together in somevariable uk. The global variable v in
ludes two main
omponents. The �rst one, vb, is that de�ned by thereal variables vq, whereas the se
ond, vc, is that de�nedby the values the integer CD ambiguities to be �xed.We thus have on Gcd: vc;ν ≡ N
[cd]
ν . Equations (28)and (29) are then written in the respe
tive fun
tionalforms

Φ0
ν,k = Aφ;ν,kuk + (Bkvb +λνvc;ν)+ β̃φ;ν,k + εφ;ν,k (31)

P 0
ν,k = Ap;ν,kuk + Bkvb + β̃p;ν,k + εp;ν,k (32)where Aφ;ν,k, Ap;ν,k and Bk are linear operators.

As shown in Lannes and Gratton 2009, the 
orrespond-ing �oat problem 
an be solved in the least-square sense,re
ursively, by using the QR method; see, e.g., Björ
k1996. Other re
ursive least-square te
hniques 
an of
ourse be implemented; see, e.g., de Jonge 1998. At ea
hepo
h, these methods provide the `�oat ambiguity ve
-tor' v̂k;c and the Cholesky fa
tor Rk;c of the inverse of itsvarian
e-
ovarian
e matrix. This upper-triangular ma-trix is then `de
orrelated.' In our approa
h, this is doneon the grounds of the LLL algorithm; see, e.g., Se
t. 8.2in Lannes and Gratton 2009. On
e Rk;c has thus beende
orrelated, the integer ambiguity solution v̌k;c is ob-tained by using 
lassi
al integer-programming te
hniques.On
e v̌k;c has been �xed to some v̌c (� v̌k;c → v̌c�), and
v̌c has been validated, the problem 
an be 
ompletelysolved. Indeed, we then have v̌c ≡ N [cd]. The 
orre-sponding estimates of uk and vb are then denoted by ǔkand v̌b, respe
tively.In parti
ular, as spe
i�ed in Se
t. 5, estimates of thesatellite biases δ̃[s]µ;ν,k(j) for j 6= 1 are thus obtained.These estimates, denoted by δ̌[s]µ;ν,k(j), are referred to asthe `satellite pseudo-
lo
k biases.' They 
an be broad-
asted to the network users for their pre
ise point po-sitioning. As 
lari�ed in Se
t. 4.3, the equations to besolved by the user have then the form of the traditionalPPP equations.4.3. Related PPP equationsLet us denote by rι the user re
eiver. The observationalequations (19) and (20) 
an then be written in the re-spe
tive forms
Φ0
ν,k(ι, j) =

∑3
p=1 ck;p(ι, j)u

(ξ)
ι,k;p +

∑

q
dk;q(ι, j) vq

+ bk(ι, j)u
(τ)
ι,k − κνIk(ι, j)

+ [δ
[r]
φ;ν,k(ι) + δ

[s]
µ;ν,k(j)]

+ λνNν(ι, j) + εφ;ν,k(ι, j)

(33)
P 0
ν,k(ι, j) =

∑3
p=1 ck;p(ι, j)u

(ξ)
ι,k;p +

∑

q
dk;q(ι, j) vq

+ bk(ι, j)u
(τ)
ι,k + κνIk(ι, j)

+ [δ
[r]
p;ν,k(ι) + δ

[s]
p;ν,k(j)] + εp;ν,k(ι, j)

(34)From Eqs. (24), (26) and (27), we have (with regard tothe sele
ted spanning tree of the GNSS network graph)
∣

∣

∣

∣

∣

∣

δ
[s]
φ;ν,k(j) ≃ δ̌

[s]
φ;ν,k(j) + κνI

[s]
k (j) − λνN

[s]
ν (j)

δ
[s]
p;ν,k(j) ≃ δ̌

[s]
p;ν,k(j) − κνI

[s]
k (j)

(35)We are then led to set
∣

∣

∣

∣

∣

∣

Φ
(ι)
ν,k(j) := Φ0

ν,k(ι, j) − δ̌
[s]
φ;ν,k(j)

P
(ι)
ν,k(j) := P 0

ν,k(ι, j) − δ̌
[s]
p;ν,k(j)

(36)
I
(ι)
k := Ik(ι, j) − I

[s]
k (j) (37)

N (ι)
ν (j) := Nν(ι, j) − N [s]

ν (j) (38)
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h 74Equations (33) and (34) then yield the PPP equations
Φ

(ι)
ν,k(j) =

∑3
p=1 ck;p(ι, j)u

(ξ)
ι,k;p +

∑

q
dk;q(ι, j) vq

+ bk(ι, j)u
(τ)
ι,k − κνI

(ι)
k (j)

+ λνN
(ι)
ν (j) + δ

[r]
φ;ν,k(ι) + ε̃φ;ν,k(ι, j)

(39)
P

(ι)
ν,k(j) =

∑3
p=1 ck;p(ι, j)u

(ξ)
ι,k;p +

∑

q
dk;q(ι, j) vq

+ bk(ι, j)u
(τ)
ι,k + κνI

(ι)
k (j)

+ δ
[r]
p;ν,k(ι) + ε̃p;ν,k(ι, j)

(40)Clearly, as δ̌[s]µ;ν,k is an estimate of δ̃[s]µ;ν,k, ε̃µ;ν,k di�ersfrom εµ;ν,k. We are thus led to equations having the formof the traditional PPP equations, but to solve the prob-lem, the varian
e-
ovarian
e matri
es of ε̃φ;ν,k and ε̃p;ν,kare then to be properly taken into a

ount.4.4. Other approa
hes: similaritiesand di�eren
esIn its prin
iple, our approa
h is similar to that de�ned inGe et al (2005, 2006). Its implementation, whi
h bene-�ts from Property 2, is however mu
h simpler. Further-more, as the number of independent double di�eren
esis at most equal to the number of 
losure delays (seeRemark 2.4), it is not generally optimal to work witha maximum set of independent double di�eren
es; seeFigs. 3 & 4, and de Jonge 1998. Moreover, in our ap-proa
h, Eq. (31) is then read as
Φ̌0
ν,k = Aφ;ν,kuk + Bkvb + β̃φ;ν,k + εφ;ν,k (41)where

Φ̌0
ν,k := Φ0

ν,k − λνN
[cd]
ν (42)The CD ambiguity 
onstraints are thus imposed in alge-brai
 manner. The 
hoi
e of the ionospheri
 variables isalso based on Property 2; see Eqs. (25) to (29). Further-more, the satellite-bias information to be broad
astedto the network user is not the same. At last but notthe least, the 
arrier-phase ambiguities have not to be�xed, a problem whi
h 
annot be easily solved. Indeed,as shown below, when the CD ambiguities are �xed, orwhen a maximum set of independent DD ambiguities is�xed, the remaining �oat problem is not of full rank.Let us �rst 
onsider the 
ase where the CD ambiguitiesare �xed. To show that the problem is not then of fullrank, let us assume that the re
eiver ambiguities N [r]

ν (i)are also �xed, and that all the variables are known ex
eptthe satellite 
lo
k biases
f

[s]
φ;k(j) := f

(s)
φ;k(j) − f

(s)
φ;k(1) (43)and the satellite ambiguitiesN [s]

ν (j) for j 6= 1. The phaseequation (1) then yields an equation of the form
Γν,k(i, j) = −f

[s]
φ;k(j) + λνN

[s]
ν (j) + εφ;ν,k(i, j) (44)

s s

s s s
4

s s

s s
6

s s
4

s
4

s s
4

r1

r2

r3

r4

r5

r6

s1 s2 s3 s4

Figure 4: Equivalent sets of CD ambiguities andindependent DD ambiguities. The s
enario 
on-sidered here 
orresponds to that of Fig. 3 in theDD approa
h: grid point (1, 3) was dis
arded.With regard to the sele
ted spanning tree, we thenhave 4 loops of order 4, and one loop of order 6.The DD ambiguities of the CD fun
tion de�nedby the CD ambiguities (47) are the DD ambigui-ties of the maximum set of independent DD ambi-guities (46). In other words, the maximum set ofindependent DD ambiguities (46) is equivalent tothe set of CD ambiguities (47).where Γν,k is a known fun
tion. For any ζ(j) ∈ R, wethen have
−f

[s]
φ;k(j) + λνN

[s]
ν (j)

= −[f
[s]
φ;k(j) + ζ(j)] + λν

[

N [s]
ν (j) +

ζ(j)

λν

] (45)The solution of the 
orresponding �oat problem is there-fore not unique: the problem is not of full rank. As aresult, the satellite integer ambiguities N [s]
ν (j) 
annot beeasily obtained, hen
e the less ambitious approa
h pro-posed in this paper.As expe
ted, in the 
ase where a maximum set of inde-pendent DD ambiguities is �xed, this analysis also holds.To 
larify this point in an elementary manner, let us 
on-sider the s
enario of Fig. 3 in whi
h grid point (1, 3) isnot taken into a

ount; see Fig. 4. The following �veDD ambiguities then form a maximum set of indepen-dent DD ambiguities (see, e.g., Saalfeld 1999):

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
[dd]
ν (1) := Nν(1, 1) −Nν(1, 4) +Nν(2, 4) −Nν(2, 1)

N
[dd]
ν (2) := Nν(1, 1) −Nν(1, 4) +Nν(5, 4) −Nν(5, 1)

N
[dd]
ν (3) := Nν(2, 1) −Nν(2, 2) +Nν(5, 2) −Nν(5, 1)

N
[dd]
ν (4) := Nν(3, 2) −Nν(3, 3) +Nν(6, 3) −Nν(6, 2)

N
[dd]
ν (5) := Nν(2, 2) −Nν(2, 4) +Nν(4, 4) −Nν(4, 2)

(46)With regard to the sele
ted spanning tree in Fig. 4, thisset of DD ambiguities is equivalent to the following setof CD ambiguities:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
[cd]
ν (2, 4) = N

[dd]
ν (1)

N
[cd]
ν (4, 4) = N

[dd]
ν (1) +N

[dd]
ν (5)

N
[cd]
ν (5, 2) = N

[dd]
ν (3)

N
[cd]
ν (5, 4) = N

[dd]
ν (2)

N
[cd]
ν (6, 3) = N

[dd]
ν (4)

(47)
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h 75We are thus brought ba
k to the previous CD analysis.A general study of the DD-CD relationship is to be foundin Lannes and Teunissen 2010/11.5. Re
eiver and Satellite Pseudo-Clo
k BiasesIn Se
t. 5.1, we �rst de�ne the GNSS-delay spa
es oftype ψ = (φ; ν) or (p; ν). In this framework, the pseudo-
lo
k biases are obtained via the optimization prin
iplepresented in Se
t. 5.2. To illustrate our analysis in a
on
rete manner, we �nally 
onsider an important spe-
ial 
ase (Se
t. 5.3).5.1. Edge-delay spa
e of type ψAs already spe
i�ed (see Se
t. 2.1), a fun
tion ϑ takingits values on G 
an be regarded as a ve
tor of the edge-delay spa
e E. In this Eu
lidean spa
e, the norm of ϑ isde�ned by the relation
‖ϑ‖2 =

∑

(i,j)∈G

|ϑ(i, j)|2 (48)We now adopt the notation a

ording whi
h
Ψψ,k :=

{

Φν,k if ψ = (φ; ν)

Pν,k if ψ = (p; ν)
(49)The varian
e-
ovarian
e matrix of Ψψ,k is then denotedby [Vψ,k]. Let us now 
onsider a fun
tion ϑ of type ψ,for example a phase observational residual. At epo
h k,the quadrati
 size of su
h a fun
tion is de�ned by therelation

‖ϑ‖2
ψ,k := [ϑ]T[Vψ,k]

−1[ϑ]

≡ (ϑ · V −1
ψ,k ϑ)

(50)Here, [ϑ], is the 
olumn matrix whose entries are the
omponents of ϑ on G; ( · ) is the inner produ
t of theEu
lidean spa
e E. The spa
e of fun
tions ϑ with innerprodu
t
〈ϑ′ | ϑ〉ψ,k := (ϑ′ · V −1

ψ,k ϑ) (51)is denoted by Eψ,k. This spa
e is referred to as the `edge-delay spa
e' of type ψ at epo
h k.Let us now introdu
e the following Cholesky fa
toriza-tion of the inverse of [Vψ,k]:
[Vψ,k]

−1 = [Uψ,k]
T[Uψ,k] (52)In this equation, [Uψ,k] is an invertible upper-triangularmatrix. From Eq. (50), we then have (see Eq. (48))

‖ϑ‖ψ,k = ‖ϑE
ψ,k‖ (53)where

ϑE
ψ,k := Uψ,k ϑ (54)

������������������������

�
�

�
�
�r

V −1
ψ,kϑ̌

′
ψ,k

r

ϑ̌′ψ,k

0

r

β̌ψ,k

rϑ̌ψ,kE, Eψ,k

F

F ′

F ′
ψ,k

Figure 5: Pseudo-
lo
k delay. In this geometri
alillustration, Eψ,k is the edge-delay spa
e of type ψat epo
h k; F is the bias-delay spa
e; F ′

ψ,k is theorthogonal 
omplement of F in Eψ,k, whereas F ′ isthe orthogonal 
omplement of F in the Eu
lideanspa
e E. The fun
tions lying in F ′ satisfy the
entralization property 3. The pseudo-
lo
k de-lay β̌ψ,k is the orthogonal proje
tion of ϑ̌ψ,k on Fin Eψ,k, whereas ϑ̌′

ψ,k is the orthogonal proje
tionof ϑ̌ψ,k on F ′

ψ,k: ϑ̌′

ψ,k = ϑ̌ψ,k − β̌ψ,k. A

ording toProperty 4, V −1
ψ,kϑ̌

′

ψ,k lies in F ′. In the spe
ial 
asewhere the varian
e-
ovarian
e matrix of Ψψ,k isproportional to the identity, F ′

ψ,k 
oin
ides with F ′.5.2. Optimization prin
ipleIn the 
ontext previously de�ned, Eqs. (41) and (32) areof the form
Ψ̌0
ψ,k = Aψ,kuk + Bkvb + β̃ψ,k + εψ,k (55)where (see Eq. (42))

Ψ̌0
ψ,k :=

{

Φ̌0
ν,k if ψ = (φ; ν)

P 0
ν,k if ψ = (p; ν)

(56)Note that β̃ψ,k lies in F ; see the 
ontext of Eq. (9). Letus then set
ϑ̌ψ,κ := Ψ̌0

ψ,κ − (Aψ,κǔk + Bkv̌b) (57)where ǔk and v̌b are de�ned in Se
t. 4.2. The optimalestimate of β̃ψ,k, referred to as the `pseudo-
lo
k delay,'is therefore de�ned by the relation (see Eq. (55))
β̌ψ,k := argmin

β∈F

‖ϑ̌ψ,k − β‖2
ψ,k (58)Clearly, β̌ψ,k(i, j) = δ̌

[r]
ψ,k(i) + δ̌

[s]
ψ,k(j); see Eq. (30).As illustrated in Fig. 5, β̌ψ,k is the point of F 
losestto ϑ, the distan
e being that indu
ed by the norm de�nedon Eψ,k; β̌ψ,k is therefore the proje
tion of ϑ̌ψ,k on Fin Eψ,k. Denoting by F ′ the orthogonal 
omplement
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h 76of F in E, we then have the following properties (seeFig. 5, and Se
t. 5.2 in Lannes and Gratton 2009).Property 3. The fun
tions lying in F ′ satisfy the fol-lowing `
entralization 
onditions:'
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ϑ(i, j) = 0 (for i = 1, . . . ,m)
∑

i∈Cj

ϑ(i, j) = 0 (for j = 2, . . . , n)Property 4. The pseudo-
lo
k delay β̌ψ,k is the fun
-tion β of F for whi
h V −1
ψ,k (ϑ̌ψ,k − β) lies in F ′.5.3. Referen
e spe
ial 
aseTo illustrate our analysis in a 
on
rete manner, we now
onsider the important spe
ial 
ase where the varian
e-
ovarian
e matrix of the observational data Ψψ,k is diag-onal (see Liu 2002):

[Vψ,k] = σ2
ψ diag(ηk(i, j)) (on G) (59)Here, σ2

ψ is a `referen
e varian
e;' ηk(i, j) is a nonnegativeweight fun
tion.For 
larity, let us then set
ϑ̌i,j := ϑ̌ψ,k(i, j) (60)
δ̌r,i := δ̌

[r]
ψ,k(i) δ̌s,j := δ̌

[s]
ψ,k(j) (61)and

ωi,j :=











1

ηk(i, j)
on G;

0 otherwise (62)From Properties 4 and 3, we then have (see Eqs. (4), (5)and (30))
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ωi,j
[

ϑ̌i,j −
(

δ̌r,i + δ̌s,j
)]

= 0 (for i = 1, . . .m)
∑

i∈Cj

ωi,j
[

ϑ̌i,j −
(

δ̌r,i + δ̌s,j
)]

= 0 (for j = 2, . . . n)i.e.,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ωi,j
(

δ̌r,i + δ̌s,j
)

=
∑

j∈Li

ωi,j ϑ̌i,j (for i = 1, . . .m)
∑

i∈Cj

ωi,j
(

δ̌r,i + δ̌s,j
)

=
∑

i∈Cj

ωi,jϑ̌i,j (for j = 2, . . . n)We are thus led to introdu
e the quantities
∣

∣

∣

∣

∣

∣

∣

∣

∣

Ωr,i :=
∑

j∈Li

ωi,j (for i = 1, . . .m)
Ωs,j :=

∑

i∈Cj

ωi,j (for j = 2, . . . n)

and
∣

∣

∣

∣

∣

∣

∣

∣

∣

ϑ̌r,i :=
∑

j∈Li

ωi,j ϑ̌i,j (for i = 1, . . .m)
ϑ̌s,j :=

∑

i∈Cj

ωi,j ϑ̌i,j (for j = 2, . . . n)The equations to be solved to determine δ̌r,i and δ̌s,j 
anthen be written in the form
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ωr,i δ̌r,i +

n
∑

j=2

Ωi,j δ̌s,j = ϑ̌r,i (for i = 1, . . .m)
m

∑

i=1

Ωi,j δ̌r,i + Ωs,j δ̌s,j = ϑ̌s,j (for j = 2, . . . n)i.e., in matrix terms,
∣

∣

∣

∣

∣

[Ωr] [δ̌r] + [Ω][δ̌s] = [ϑ̌r]

[Ω]T[δ̌r] + [Ωs][δ̌s] = [ϑ̌s]
(63)Note that [Ωr] is an m×m diagonal matrix, while [Ωs] isan (n− 1)× (n− 1) diagonal matrix; [Ω] has m lines and

n− 1 
olumns. The inverses of [Ωr] and [Ωs] are trivial.As 
lari�ed below, Eq. (63) 
an be solved by 
omputingthe inverse of a matrix with size (n− 1) × (n− 1).From the �rst equation (63), we have
[δ̌r] = [Ωr]

−1
(

[ϑ̌r] − [Ω][δ̌s]
) (64)hen
e, from the se
ond,

[Ω]T[Ωr]
−1

(

[ϑ̌r] − [Ω][δ̌s]
)

+ [Ωs][δ̌s] = [ϑ̌s]i.e.,
[Ωsr][δ̌s] = [ϑ̌s] − [Ω]T[Ωr]

−1[ϑ̌r]where [Ωsr] is the following (n− 1) × (n− 1) matrix:
[Ωsr] := [Ωs] − [Ω]T[Ωr]

−1[Ω] (65)It then follows that
[δ̌s] = [Ωsr]

−1
(

[ϑ̌s] − [Ω]T[Ωr]
−1[ϑ̌r]

) (66)If need be, Eq. (64) then yields [δ̌r].6. Con
luding CommentsThis paper, whi
h appeals to elementary notions of al-gebrai
 graph theory, 
ompletes the study presented inLannes and Gratton 2009. On
e the CD ambiguitieshave been �xed, parti
ular satellite biases 
an be esti-mated and broad
asted to the network users for theirpre
ise point positioning. For example, in the 
ase oflarge networks, ea
h of these biases in
ludes three (orfour) terms: a satellite-
lo
k term, a satellite time-groupterm, a satellite ionospheri
 term, and (for the phase)
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lo
k biases for pre
ise point positioning. The algebrai
 approa
h 77a satellite integer ambiguity multiplied by the 
orrespond-ing wavelength; see Eqs. (26), (27), (24), (16), (17)and (18). The form of the PPP equations to be solvedby the network user is then the same as that of the tra-ditional PPP equations; see Eqs. (39) and (40).As soon as the CD ambiguities are �xed and validated,estimates of these �oat biases 
an be obtained. The 
or-responding operation simply amounts to solving a linearsystem whose size is equal to the number of satellitesother than the referen
e satellite; see Eqs. (66) and (65).The main result of this paper is that no other ambi-guity is then to be �xed, hen
e a better e�
ien
y. Inparti
ular, in this approa
h, it is not ne
essary to �xthe 
arrier-phase ambiguities, a problem whi
h 
annotbe easily solved; see Se
t. 4.4.The prin
iple of our strategy di�ers from that of Geet al (2005, 2006). Its implementation, whi
h is based onProperty 2, is mu
h simpler. In parti
ular, the CD am-biguity 
onstraints are imposed in algebrai
 manner; seeEqs. (41) and (42). The 
hoi
e of the ionospheri
 vari-ables is also based on Property 2; see Eqs. (25) to (29).Furthermore, the satellite-bias information to be broad-
asted to the network user is not the same. At last butnot the least, as already emphasized, this information isobtained without �xing the 
arrier-phase ambiguities.A
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