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Abstract

As shown in a companion paper devoted to GNSS net-
works in algebraic graph theory, any (real- or) integer-
valued function taking its values on the edges of the
GNSS graph can be regarded as the sum of three (real- or)
integer-valued functions: a function taking its values on
the receiver vertices of this graph, another one on the
satellite vertices, and the last one, the closure-delay (CD)
function, taking its values on the loop-closure edges. For
a given spanning tree, this decomposition is unique. The
notion of closure delay generalizes that of double differ-
ence (DD). In this framework, particular satellite biases
can be estimated and broadcasted to the network users
for their precise point positioning (PPP). For example,
in the case of large networks, each of these biases in-
cludes three (or four) terms: a satellite-clock term, a
satellite time-group term, a satellite ionospheric term,
and (for the phase) a satellite integer ambiguity multi-
plied by the corresponding wavelength. The form of the
PPP equations to be solved by the network user is then
the same as that of the traditional PPP equations. As
soon as the CD ambiguities are fixed and validated, es-
timates of these float biases can be obtained. The main
result of this paper is that no other ambiguity is then
to be fixed, hence a better efficiency. In particular, in
this approach, it is not necessary to fix the carrier-phase
ambiguities, a problem which cannot be easily solved.
Indeed, as shown in this paper, when the CD ambigui-
ties are fixed (or when a maximum set of DD ambiguities
is fixed), the remaining float problem is not of full rank.
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1. Introduction

The global positioning techniques are based on the fol-
lowing observational equations. For each frequency v, for
each receiver-satellite pair (i,j) = (r;,s;), and at each

epoch ¢, the carrier-phase and code data are respectively
of the form (see, e.g., Teunissen and Kleusberg 1998)

(I)u,t(iuj) = pt(ihj) + Tt(ihj) - KVIt(Z' j)
+[£5526) = FSI D) = mulabn ) — 950G (1)
+ AN (0, 5) + g, 4)
Pv,t(ia.]) - pt(
+ 155 6) -

J) +Te(i, 5) + ko le(3,5)

RGN+ rulgl) @) — aS1()] (2)
+ Epiv,t (Z’ J)

In these equations, which are expressed in length units,
pt(i,7) is the receiver-satellite range: the distance be-
tween satellite s; (at the time ¢t — 7 where the signal is
emitted) and receiver r; (at the time ¢ of its reception);
T:(i,7) and (i, j) are the tropospheric and ionospheric
delays, respectively. Here,

Ky, = V2 U2 = N2\ (3)

The A, ’s denote the wavelengths of the carrier waves in-
volved in the observational process. Note that x,, = 1.
The integers N, (i,j) are the integer carrier-phase ambi-
guities: N, (i,7) € Z.

The instrumental biases and the clock errors depending
only on r; and ¢ are lumped together in the ‘extended
receiver-clock biases’ f, ¢t( i), fﬁ(z) Likewise, the in-
strumental biases and the clock errors depending only on
s;j and t are lumped together in the ‘extended satellite-
clock biases’ f(§> f(s)( ). Similarly, géf%(z), gl(fg()
and g(b)( ), gp ) denote the biases involved in the def-
1n1t10n of the tlme group delays.

In this model, the expectation values of the noise terms
Epit(i,7) and €,.,4(4,j) are supposed to be zero. We
also assume that these noises are not mutually corre-
lated.
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In this paper, we consider a GNSS network and par-
ticular satellite biases. Estimates of these pseudo-clock
biases are broadcasted to the network users for their pre-
cise point positioning (PPP). The theoretical framework
is presented in Sect. 2. Once the linearization aspects
have been specified (Sect. 3), the corresponding approach
is then introduced (Sect. 4). The similarities and differ-
ences with other related approaches are examined in that
framework. Section 5 is devoted to the optimization tech-
nique that provides the pseudo-clock biases in question.
Some comments on the key points of our contribution
are to be found in Sect. 6.

2. Theoretical Framework

Let us consider a GNSS network including m stations,
and thereby m multifrequency receivers r;. The num-
ber of satellites s; involved in the observational process
over some time interval [t1, ] is denoted by n. The
‘observational grid’ of the network is therefore a grid G,
including m lines, n columns, and mn points; see Fig. 1.
For example, in the case of large networks, m and n are
of the order of 100 and 32, respectively. A function such
as &4, or py,, with k in [1, £], takes its values on some
points (i,7) of G,. These points form a subset of G,
denoted by Gi: the ‘GNSS grid’ of epoch t;. When no
confusion may arise, subscript &k is omitted: G = G.
The i** line of G is denoted by L;:

L;:={j:(i,j) € G, i being fixed} (4)
Likewise, the set
Cj:={i:(i,j) € G, j being fixed} (5)

characterizes the j* column of G.

2.1. GNSS graph. Edge-delay space

In the example presented in the upper part of Fig. 1, the
points (i, 7) of G are shown as black dots. As illustrated
in the lower part of this figure, these points correspond to
the ‘edges’ (r;,s;) of the GNSS graph to be considered,;
& denotes the set of its edges; ne is their number. The
receivers and the satellites involved in the definition of
these edges define the ‘vertices’ of this graph; }V denotes
the set of its vertices, and n, their number:

ny=m-+n (6)

A GNSS graph G is therefore defined by the pair (V, &):
G = G(V,&). For simplicity, we now assume that G is
connected (e.g., Biggs 1996): given any two vertices of V,
there exists a path of edges of £ connecting these vertices.
(If this is not the case, G is reduced to its main connected
component; G is then reduced consequently.)

A function ¥ taking its values on G, and thereby on &,
can be regarded as a vector of E := R". The values of 9
on G are then regarded as the components of ¥ in the
standard basis of this edge-delay space.
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Figure 1: GNSS grid G and GNSS graph G.
In the example shown here, the observational
grid G, includes 12 points: m =3, n=4.
The GNSS grid of epoch ti, G = Gy, includes
9 points; these points are shown as black
dots. The corresponding graph, G = G, in-
cludes 7 vertices and 9 edges: ny =m+n =7,
ne = 9. The data corresponding to the receiver-
satellite pairs (ri,s2), (r2,s3) and (rs, s1) are
missing.

2.2. GNSS spanning tree and loops

As illustrated in Fig. 2, a spanning tree of G = G(V, )
is a subgraph Gy = G(V, &) formed by n, vertices and
ny — 1 edges, with no ‘cycle’ in it. Here, ‘cycle’ is used in
the sense defined in algebraic graph theory (Biggs 1996).
In the GNSS community, to avoid any confusion with
the usual notion of wave cycle, it is not forbidden to
substitute the term of ‘loop’ for that of ‘cycle.” In this
context, the number of loops defined through a given
fixed (but arbitrary) spanning tree is the number of edges
of £ that do not lie in & . These edges,

c(q) == (Ti(g) » 5j(q)) (7)

are said to be ‘loop-closure edges’ (see Fig. 2). Their
number is denoted by n.:

Ne =ne — (ny — 1) (ny =m+n, ne < mn) (8)
To select a GNSS spanning tree, the edges of £ are first
ordered somehow. The corresponding sequence is of the
form

e(Q) = (Tiq asjq) (q: 17"'7n€)

The algorithm is the following: set ¢ = 0, ngt = 0, and
Es = 0 (the empty set). Then,

(1) If ngg = ny — 1, terminate the process; otherwise,
set q = q+1.

(2) When the vertices of e(q) are not connected via
set

edges of &, set Est = Ex U {e(q)} and ngt = ng; + 1;
then go to step (1).
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Figure 2: GNSS spanning tree and loops. The
black edges of G (the graph introduced in Fig. 1)
are the edges of the selected spanning tree Gs:.
The points of the corresponding subgrid Gg; are
shown as black dots. The remaining points of G
(the red dots of G) correspond to the loop-closure
edges (the red edges of G). We then have one loop
of order 4, and 2 loops of order 6: (r2,$4,71,51),
(r3, s3, T1, S1, r2, S2) and (rs, s4, T1, S1, r2, S2).
These orders are shown as red numbers.

The subgrid of G corresponding to the edges of & is
denoted by Gy;. By construction, the spanning tree thus
found depends on how the edges are ordered.

Example 2.1. To show, in concrete manner, how this
algorithm works, we now consider its action on the grid G
of Fig. 2, its points being ordered line by line.

The points of the first line of G, the points (1, 1), (1,3)
and (1,4), define the first 3 edges of E:

gStS:et{(Tlvsl)a(r1533)7(761754)} (nst :3)

By construction, four vertices of G are then connected:
r1, S1, S3 and s4.

The next point of G, the first point of line 2, is associated
with edge (r2,81). As r2 and s; are not connected via
edges of &, this edge cannot be a loop-closure edge. We
therefore set

set
Est = Ex U{(r2,51)} (nse = 4)
Five vertices are then connected: ry, s1, s3, s4 and rs.

The next point of line 2 is associated with edge (r2, s2).
As r9 and so are not connected via edges of &, we set

set
gst = gst U {(T27 52)} (nst = 5)
Six vertices are then connected: 1, s1, $3, S4, 2 and ss.

The next point of G, the last point of line 2, is associated
with edge (r2,s4). As ro and s4 are already connected,
this edge closes a loop with some edges of £. As a result,
this edge is the first loop-closure edge: c¢(1) = (7o, s4);
see Eq. (7). The corresponding loop, (r2,84,71,81), is
of order 4: it includes 4 edges (see Fig. 2).
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The next point of G, the second point of line 3, is associ-
ated with edge (r3, s2). As r3 and sy are not connected
via edges of &, we then set

gst Sétgst U {(TB; 52)} (nst = 6)

As all the vertices of £ are then connected, the algorithm
stops: & is then completely defined.

The remaining points of line 3 therefore define two loop-
closure edges: ¢(2) = (r3,s3) and ¢(3) = (r3, s4). These
loops are of order 6; see Fig. 2.

Remark 2.1. In the special case of the graph shown
in Fig. 2, there exist particular spanning trees for which
the three loops are of order 4. As the choice of the span-
ning tree is arbitrary, it is not useful to search for such
spanning trees.

Remark 2.2. In Example 2.1, the points of G are or-
dered line by line. In fact, to handle some graph tran-
sitions (i.e., some scenario changes), one may be led to
order them in a more subtle manner; see Sect. 7.4.3 in
Lannes and Gratton 2009.

2.3. Reference properties
The properties presented in this section are established in

Sect. 4.2 of Lannes and Gratton 2009. We first introduce
the notion of ‘bias-delay space.’

Bias-delay space. The subspace of E whose func-
tions 3 are of the form

B(i,§) = 6M(i) + 6¥(j) with 6F(1) =0 9)

is denoted by F'. This subspace can be referred to as
the bias-delay space. By definition, the ‘receiver-delay
space’ FI'l is the subspace of F whose functions 3 depend
only on i: 3(i,7) = 6I')(). Similarly, the ‘satellite-delay
space’ FI8 is the subspace of F' whose functions are of the
form ((i,5) = dBl(4) with §BI(1) = 0. By construction,
F is the ‘oblique direct sum’ of FI'l and FBI:

F = pll 4 pls] Flil A plsl = {0}
We thus have

dim FI' = m dim FIsl = n —1 (10)
dim F = dim FI 4 dim FB = n, — 1 (11)

Property 1. Given any edge-delay function ¥ taking its
values on G, for each spanning tree Gy of G, there exists
a unique set of receiver and satellite delays

{l ()}, U {0l (.7)}?:1

such that 9(i, j) = 90 (i) + 9(j) on the points of Gy.

with 9F(1) =0

More concretely, the following process provides these de-
lays in a recursive manner; for further details, see Lannes
and Gratton 2009.
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Recursive differential process. Set 90 (1) = 0; then,
span the points of Gy line by line (see Fig. 2 or Fig. 3).
For each point (7, ;) thus encountered, then proceed as
follows.

If ¥ (j) has already been fixed, and 9"(3) is not fixed
yet, set

9 (i) = 94, 5) — 9¥(j)

If 9I(7) has already been fixed, and 9¥(5) is not fixed
yet, set

O (5) = (i, ) — 9 (4)

To obtain all these delays, Gy is to be spanned in this
way as many times as required. It is important to point
out that the only operations involved in this process are
differences. As a result, if 9} is an integer-valued function,
the receiver and satellite delays 9" (i) and 955! (5) lie in Z.

Example 2.2. To illustrate this recursive differential
process, we now follow its action on the grid G of Fig. 2.
As 9P1(1) is nought, we then obtain successively:

(1) = 9(1,1) — 9BI(1) = 9(1,1)
IB1(3) = 9(1,3) — 0I(1)
IB1(4) = 9(1,4) — 9l (1)
I(2) = 9(2,1) —9BI(1) = 9(2,1)
IB1(2) = 9(2,2) — 9l (2)
I (3) = 9(3,2) — 0F(2)

Closure delays. According to Property 1, the quanti-
ties

Odl(i, §) = 0(i, §) — [97(6) + 9 (j)] (12)

vanish on the points of Gg. The values of 9l¢d) of interest
are therefore defined on the remaining points of G, i.e.,
on the ‘CD subgrid’

Ged == {(ZaJ)GG (Za.j)¢GSt} (13)

Clearly, G.q includes n. loop-closure points; see Eq. (8)
and Figs. 2 & 3. The quantities 9[°d(i,7) on Geq can
therefore be referred to as the ‘closure delays’ of ¥, hence
the notation cd or CD.

The notion of closure delay generalizes that of double
difference. In fact, for a given loop, the closure delay
of 9 is the ‘alternate algebraic sum’ of the values of ¢
along the edges of that loop. For example, with regard
to Fig. 3, the CD ambiguity N (3,3) is the alternate
sum

N,(3,3) =N, (3,2)+ N, (2,2)— N, (2,1)+ N, (1,1) = N, (1, 3)

As clarified in a paper to appear in the Journal of Geodesy
(Lannes and Teunissen 2010/11), the CD ambiguities are
the ‘estimable functions of carrier-wave ambiguities’ of
de Jonge 1998. These functions were introduced to cor-
rect for rank defects of the undifferenced equations; see
Teunissen 1984.
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Figure 3: Interest of the CD approach. In the sce-
nario considered here, G includes 15 points. The
selected spanning tree is built by spanning the
points of G line by line. The points of Gg; are
shown as black dots. The red ones are the cor-
responding loop-closure points; see Fig. 2. With
regard to the selected spanning tree, we then have
3 loops of order 4, and 3 loops of order 6. Here, the
‘maximum number of independent double differ-
ences’ is equal to 5; for further details see Eq. (46).
In the corresponding DD approach, the data of grid
point (1,3) are not used; see Fig. 4. The CD ap-
proach is therefore preferable since all the data are
then processed.

Property 2. Any edge-delay function ¥ taking its values
on G can be decomposed in the form

9(i, j) = 9 (i) + 91 (5) + vled(i, 5)

For a given spanning tree, this decomposition is unique.

This property is a simple transcription of Eq. (12). The
uniqueness of this decomposition results from Property 1.

Example 2.3. With regard to the GNSS grid of Fig. 2,
let us consider (for simplicity) the ambiguity function

The recursive differential process of Example 2.2 applied
to this function yields the following components:

2 o« 2 2
NI, -1 -1 % -1
x —4 —4 —4

* —1 -3
N, x  —3
* -1 -3
0
Nledl, 0 0
* 0 7
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Remark 2.3. To handle some graph transitions, one
may be led to change the selected spanning tree (see
Remark 2.2). The CD ambiguity variables are then trans-
formed accordingly. The corresponding linear operators
can easily be determined.

Remark 2.4. It can be shown that the maximum num-
ber of independent double differences is less than or equal
to nc; see Lannes and Teunissen 2010/11. An exam-
ple where this number is strictly less than n. is given
in Fig. 3.

3. Linearization

For clarity, let us now substitute k for ;. In most cases
encountered in practice, the functional variable p; can
be linearly expanded in terms of other variables. In the
general case, some of the latter depend on k, while others
not; see, e.g., Feng and Li 2008. In other terms, the first
ones are ‘local’ variables, while the others are ‘global’
with however possible transitions from time to time.

More precisely, the receiver-satellite range can be ex-
panded in the form

pi(i, ) = pg(l,j) +Z§:1 Chzp (1, ) ugfk);p (14)
+ Zq dk;q (’L?J) Uq
Here, p{ (i, j) is the nominal value of py (i, j); fk) p is the

p*" increment variable of (the position of) receiver r; at
epoch k. Note that cg.(Z,7) is a direction-cosine func-
tion; see, e.g., Eq. (14) in Lannes and Gratton 2008.
The u; )p’s are the position components of the local
varlable ur. When the positions of some receivers are
expanded as ‘piecewise polynomial functions’ of ¢, the
parameters involved in these expansions appear in the
definition of the global variables vq; and likewise when
orbital parameters are to be refined. Clearly, the v4’s
are components of some global variable v. The func-
tions dy.q(7,7) characterize the corresponding global ex-
pansion term at epoch k.

Similarly, in most cases encountered in practice, one may
refer to a tropospheric model of the form

Tiu(i, §) = bi(i, ) ul) (15)

where u( 7) is the zenith tropospheric variable of receiver r;
at epoch k for further details on this point, see Ge et
al 2006. The u( k) . S are the tropospheric components of
the local variable ug. Like cgp (4, 5), bi(i,7) is a known
function which takes into account the receiver-satellite
geometry.

For simplicitly, we now restrict ourselves to the case of
large networks. In that case, the functions b, and cy.p
effectively depend on ¢ and j.

4. The Algebraic Approach: Survey

We first introduce the reference equations of our ap-
proach: Sect. 4.1. We then give a survey of the methods
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to be implemented for solving the problem: Sect. 4.2.
The related PPP equations are specified in Sect. 4.3. We
finally make some comments on the similarities and the
differences with other related approaches: Sect. 4.4.

4.1. Reference equations

For 11 = ¢ or p, let us set

O @) = 8 6) + 80, (1) "
08,0 = 8L — 68

in which
540 = £ — ruglh(i)] -
8, (0) = ~f5h0) — mugSh ()

and
S5 k@) = (@) + rugpt ()]

(18)

58 L) = —LFSL0) + rug L)

By construction (see Eq. (16)), we have 6# (1) =0.

The linearized observational equations can then be writ-
ten in the forms (see Egs. (1), (2), (14) and (15))

B0, (i,5) = Y5 enap (i, ) w30, disq (i, 1) vg
+ i (i, ) uly) — ki (i, )
+ 105, () + 85, L (7))
+ )\VNV(Za.]) + 84);1/,16(17])
PO, (i,7) = S0 caip(i, 5) ulSy + g disq (i 5) vg
+ bi(i, 5) u§,§ + 1, Iu(3,7) (20)
+ 108 (0) + 68 ()] + (i, )
where
@y (6, 5) = ok (6, 5) — pR(0, ) (21)
PIE),k‘(lhj) = V,k(iaj) - pg(laj) (22)

The algebraic approach presented in this paper is based
on Property 2. With regard to the selected spanning
tree, the carrier-phase ambiguity functions are then de-
composed in the form

N, (i,j)

We are then led to introduce the quantities

= NI(@) + NFI () + NED(@,5) (on @) (23)
sE oy = s Gy o NI
¢;1/k(z) . ¢;y,k(z) + Av Ny (Z)
05 k() = 8%, () + MNE ()

As NF(1) = 0, we have 55;]”,;9(1) = 0.
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In the absence of reliable ionospheric model, the iono-
spheric delays are also decomposed:
LG.0) = 10 + IPG) + 105 (n @) (25)

The clock biases to be considered are then of the form

Sa@) = Ol (D) =m0 (D) -
) = 8 - I

and
)= )+ r ) o
Soid) = o () + R I()

Again, as I (1) = 0, we have (5L]Vk( ) = 0. The phase

and code equations to be considered can then be written
in the respective forms

S Chip (1) Sy + g diia (i) v
(i, f) uly) — koI, 5) (28)

(I)g,k(iaj) =

+ )‘VNIECd] (Zaj) + B(ﬁ;l/,k(iaj) + E(ﬁ;u,k(iaj)

S Chip (i) Sy + g g (i5) Vg
+ (i, ) () + w2 (6, ) (29)

+ Bp;u,k(i’j) + €pw,k (3, 7)

Pz?,k(lhj) =

where, for u = ¢ or p (see Eq. (9)),

Bruwe(i G) =0, . (6) + 35, () (30)

When three carrier waves are available, this approach is
particularly recommended. Indeed, no ionospheric model
is then introduced.

4.2. Solution of the problem

The analysis presented in Lannes and Gratton (2009) can
be transposed to Egs. (28) and (29). The local functional
variables (4., 1 and 3., are then regarded as particular
variables of the problem. The other local variables “5512 9

iTk) and I[C ](z j) on Gcq are lumped together in some
variable uy. The global variable v includes two main
components. The first one, vy, is that defined by the
real variables vy, whereas the second, v, is that defined
by the values the integer CD ambiguities to be fixed.
We thus have on Geq: vep = NLCd]. Equations (28)
and (29) are then written in the respective functional
forms

Vk = Ay it + (Brvw + MVew) + Bk + g (31)

Py, = Apw ktik + Brvb + Bpwk + Epk (32)

where Ay, 1, Ap., 1 and By are linear operators.
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As shown in Lannes and Gratton 2009, the correspond-
ing float problem can be solved in the least-square sense,
recursively, by using the QR method; see, e.g., Bjorck
1996. Other recursive least-square techniques can of
course be implemented; see, e.g., de Jonge 1998. At each
epoch, these methods provide the ‘float ambiguity vec-
tor’ Uy,c and the Cholesky factor Ry, of the inverse of its
variance-covariance matrix. This upper-triangular ma-
trix is then ‘decorrelated.” In our approach, this is done
on the grounds of the LLL algorithm; see, e.g., Sect. 8.2
in Lannes and Gratton 2009. Once Ry, has thus been
decorrelated, the integer ambiguity solution ¥y, is ob-
tained by using classical integer-programming techniques.
Once 9;c has been fixed to some 0. (“Og;c — 0c”), and
¥. has been validated, the problem can be completely
solved. Indeed, we then have o, = N[ The corre-
sponding estimates of uj, and vy, are then denoted by
and vy, respectively.

In particular, as specified in Sect. 5, estimates of the
satellite biases 5[] x(J) for j 7£ 1 are thus obtained.
These estimates, denoted by 6# .1 (J), are referred to as
the ‘satellite pseudo-clock biases.” They can be broad-
casted to the network users for their precise point po-
sitioning. As clarified in Sect. 4.3, the equations to be
solved by the user have then the form of the traditional
PPP equations.

4.3. Related PPP equations

Let us denote by r, the user receiver. The observational
equations (19) and (20) can then be written in the re-
spective forms

ﬁmm=zg%wm¢%+zwwm%
+bk (2% L, 7’11/]]@ Laj

) [)] k []( | (33)
[6¢Vk()+6;:vk()]
+ )\VNV(La.]) + E¢;V,k(Lﬂj)
PO (1,5) =52, ety ) u'®) + 2 disa (e, 5) v
v\ p=1 Ck;p ) J L,ksp ksalls ) Vg

+ (e, 5) ul) + K i(t,5) (34)

+ 108, L (0) + 08 (D] + epk (0, 5)

From Eqs. (24), (26) and (27), we have (with regard to
the selected spanning tree of the GNSS network graph)

o8 () = 88, () + m I () = A NELG)
’ (35)
o G) =88 () — k1P ()
We are then led to set
®L () =901, 4) — 85, () .
PY)(5) = PO d) — 88 ()
1Y = 1,1, 5) - 1) (37)
N{I(§) = N, (1, 5) — NE(j) (38)
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Equations (33) and (34) then yield the PPP equations

‘I’l(f}c (.7) = 23:1 Cksp (L, J) uflz;p + Zq dk;q (L, J) Vq
+ k() uly) = s V() (39)

+ AN () 4 08 (0) + Egn (e, 5)

L) s 3 . .
PLIE) = S crop(io 1) w5y + g g (129) vg
o) w i+ w0 (G) - (40)
+ 0y (8) + ()
Clearly, as SLS;]V,I@ is an estimate of SLS;]V,k: v,k differs
from €, . We are thus led to equations having the form
of the traditional PPP equations, but to solve the prob-

lem, the variance-covariance matrices of £4,, 1 and €p. i
are then to be properly taken into account.

4.4. Other approaches: similarities
and differences

In its principle, our approach is similar to that defined in
Ge et al (2005, 2006). Its implementation, which bene-
fits from Property 2, is however much simpler. Further-
more, as the number of independent double differences
is at most equal to the number of closure delays (see
Remark 2.4), it is not generally optimal to work with
a maximum set of independent double differences; see
Figs. 3 & 4, and de Jonge 1998. Moreover, in our ap-
proach, Eq. (31) is then read as

‘i)lo,,k = Agukth + Broo + Bk + Epuk (41)
where
(i)g,k = q)g,k - )\VNLCd] (42)

The CD ambiguity constraints are thus imposed in alge-
braic manner. The choice of the ionospheric variables is
also based on Property 2; see Egs. (25) to (29). Further-
more, the satellite-bias information to be broadcasted
to the network user is not the same. At last but not
the least, the carrier-phase ambiguities have not to be
fixed, a problem which cannot be easily solved. Indeed,
as shown below, when the CD ambiguities are fixed, or
when a maximum set of independent DD ambiguities is
fixed, the remaining float problem is not of full rank.

Let us first consider the case where the CD ambiguities
are fixed. To show that the problem is not then of full

rank, let us assume that the receiver ambiguities Nl[,r] (1)
are also fixed, and that all the variables are known except
the satellite clock biases

FEG) = £500) = £ (43)

and the satellite ambiguities N (j) for j # 1. The phase
equation (1) then yields an equation of the form

Lo(i §) = —Foe () + ANE () + epn(ing)  (44)
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Figure 4: Equivalent sets of CD ambiguities and
independent DD ambiguities. The scenario con-
sidered here corresponds to that of Fig. 3 in the
DD approach: grid point (1,3) was discarded.
With regard to the selected spanning tree, we then
have 4 loops of order 4, and one loop of order 6.
The DD ambiguities of the CD function defined
by the CD ambiguities (47) are the DD ambigui-
ties of the maximum set of independent DD ambi-
guities (46). In other words, the maximum set of
independent DD ambiguities (46) is equivalent to
the set of CD ambiguities (47).

where I, 5 is a known function. For any ((j) € R, we
then have

— 5.0+ ANEG)

G } (45)

— UG+ €+ A, [N + 5

The solution of the corresponding float problem is there-
fore not unique: the problem is not of full rank. As a
result, the satellite integer ambiguities Nl[,s] (j) cannot be
easily obtained, hence the less ambitious approach pro-
posed in this paper.

As expected, in the case where a maximum set of inde-
pendent DD ambiguities is fixed, this analysis also holds.
To clarify this point in an elementary manner, let us con-
sider the scenario of Fig. 3 in which grid point (1, 3) is
not taken into account; see Fig. 4. The following five
DD ambiguities then form a maximum set of indepen-
dent DD ambiguities (see, e.g., Saalfeld 1999):

NEY(1) == N, (1,1) = No(1,4) + N, (2,4) — No(2,1)
NED(©2) == N (1,1) = No(1,4) + No (5,4) = N, (5, 1)
NE(3) = N, (2,1) = N, (2,2) + N (5,2) — N, (5,1) (46)
NSY(4) := N, (3,2) — No(3,3) + No(6,3) — N.(6,2)
NE(5) i= No(2,2) — No(2,4) + No(4,4) — N, (4,2)

With regard to the selected spanning tree in Fig. 4, this
set of DD ambiguities is equivalent to the following set
of CD ambiguities:

N2, 4) = N (1)

N4, 4) = NEY2) + N (5)

NE(5,2) = NI (3) (47)
N (5,4) = NI (2)

N6, 3) = NI (1)
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We are thus brought back to the previous CD analysis.
A general study of the DD-CD relationship is to be found
in Lannes and Teunissen 2010,/11.

5. Receiver and Satellite Pseudo-Clock Biases

In Sect. 5.1, we first define the GNSS-delay spaces of
type ¥ = (¢;v) or (p;v). In this framework, the pseudo-
clock biases are obtained via the optimization principle
presented in Sect. 5.2. To illustrate our analysis in a
concrete manner, we finally consider an important spe-
cial case (Sect. 5.3).

5.1. Edge-delay space of type

As already specified (see Sect. 2.1), a function 9 taking
its values on G can be regarded as a vector of the edge-
delay space E. In this Euclidean space, the norm of ¥ is
defined by the relation

1012 = > 196, 5)? (48)
(1,7)€G

We now adopt the notation according which

Qe if Y= (o3v

. ) (49)
Py if¢y=(p;v)

The variance-covariance matrix of ¥y ; is then denoted

by [Vik]. Let us now consider a function ¢ of type 9,

for example a phase observational residual. At epoch k,

the quadratic size of such a function is defined by the
relation

1915, = [T [Vior] (Y]
= (0-V,,9)

\ij,k =

(50)

Here, [9], is the column matrix whose entries are the
components of ¥ on G; ( - ) is the inner product of the
Euclidean space E. The space of functions ¥ with inner
product

(0" [0) = (0" Vyi0) (51)

is denoted by Ey, 1. This space is referred to as the ‘edge-
delay space’ of type ¥ at epoch k.

Let us now introduce the following Cholesky factoriza-
tion of the inverse of [V}, x]:

Vol ™! = [Up] " [Uy 1] (52)

In this equation, [Uy. ] is an invertible upper-triangular
matrix. From Eq. (50), we then have (see Eq. (48))

191l = 193 1 (53)

where

g = Upr ¥ (54)
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Figure 5: Pseudo-clock delay. In this geometrical
illustration, Ey j is the edge-delay space of type ¢
at epoch k; F is the bias-delay space; Fw/k is the
orthogonal complement of F in E i, whereas F" is
the orthogonal complement of F' in the Euclidean
space E. The functions lying in F’ satisfy the
centralization property 3. The pseudo-clock de-
lay By.x is the orthogonal projection of dy 5 on F
in Ey 1, whereas 19{%,@ is the orthogonal projection
of éw,k on Eﬁl,k: ﬁ{b,k = ’L%,,k — Bka. ACCOI‘ding to
Property 4, V4, ;. lies in F'. In the special case
where the variance-covariance matrix of Wy is
proportional to the identity, Fy; , coincides with F”'.

5.2. Optimization principle
In the context previously defined, Eqs. (41) and (32) are
of the form

@3716 = Aw,kuk + Brop + Bwjg + ek (55)

where (see Eq. (42))

3 0, ifp=(¢v)
0 . v,k
B i { P, if = (p;v) (56)

Note that Bw,k lies in F'; see the context of Eq. (9). Let
us then set

gw,ﬁ = \11127K — (Aw,ﬁdk + Bk{)b) (57)

where 1 and ¥y, are defined in Sect. 4.2. The optimal
estimate of 3y i, referred to as the ‘pseudo-clock delay,’
is therefore defined by the relation (see Eq. (55))

By = argmin [0y, — B[, 4 (58)
BeEF

Clearly, By 1(i,7) = Sg]k(z) + 55%(]’); see Eq. (30).

As illustrated in Fig. 5, Bw,k is the point of F' closest
to ¥, the distance being that induced by the norm defined
on Eyx; By is therefore the projection of 1, on F
in Ey 1. Denoting by F’ the orthogonal complement
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of F in E, we then have the following properties (see
Fig. 5, and Sect. 5.2 in Lannes and Gratton 2009).

Property 3. The functions lying in F’ satisfy the fol-
lowing ‘centralization conditions:’

> 9,4) =0 (fori=1,...,m)

JEL;

> 9(i,5)=0 (forj=2,...,n)

i€Cy

Property 4. The pseudo-clock delay Bw,k is the func-
tion 3 of F for which V,  (Jy . — B) lies in F’.

5.3. Reference special case

To illustrate our analysis in a concrete manner, we now
consider the important special case where the variance-
covariance matrix of the observational data Wy ;, is diag-
onal (see Liu 2002):

[Vy.k] = o, diag(nk(i, ) (on G) (59)

Here, 01/2) is a ‘reference variance;’ 7, (7, j) is a nonnegative
weight function.

For clarity, let us then set

Vi o= Uy ki, 4) (60)
bei =050 by = 08L0) (61)
and
1
—— on G;
wiy =4 (i ]) (62)
0 otherwise

From Properties 4 and 3, we then have (see Eqgs. (4), (5)
and (30))

Y wigldig — (b +05)] =0

JEL;

D wig[Pig = (bri +855)] =0

i€Cy

(fori=1,...m)
(for j=2,...n)

i.e.

Z Wi, j (Sr,i + gs,j) = Z Wz‘,ﬂ?iyj

(fori=1,...m)

JEL; JEL;
Z wi,j (Sr,i —+ gs,j) = Z wi,jﬁi,j (fOI’ j = 2, .. n)
i€Cy i€C;

We are thus led to introduce the quantities

Qr,i = E Wi, 5

JEL:

Qg j = E Wi

i€Cy

(fori=1,...m)

(for j =2,...n)
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and
19rz3: Zwijﬁi’j (forizl,...m)
JEL;
'gb,] = Z wi,j@m (fOI‘ ji=2,... n)
i€Cy

The equations to be solved to determine 6, ; and s ; can
then be written in the form

n
Qrigri'f'ZQi,jgs,j:gri (fOI"L':L...m)

m
ZQi’j 5r7i+Qs,j 6s,j :193,]‘ (fOI‘j = ,n)
i=1

i.e., in matrix terms,
[] [6:] + [2]16]
[0 [6:] + [£2][05]

[ér
[4]

Note that [€2,] is an m x m diagonal matrix, while [Qg] is
an (n—1) x (n — 1) diagonal matrix; [2] has m lines and
n — 1 columns. The inverses of [(2,] and [€] are trivial.
As clarified below, Eq. (63) can be solved by computing
the inverse of a matrix with size (n — 1) x (n — 1).

From the first equation (63), we have
[Sr] = [Qr]il([ér] - [Q] [SS]) (64)
hence, from the second,

[T ([9:] = [Q1[0]) + [26]186] = [Ds]

[Qsc][0s] = [J5] = 1217 1€2] D]
where [Q] is the following (n — 1) x (n — 1) matrix:
Q] =[] - [Q1T (2] (65)
It then follows that
[0s] = [Qa] 7 ([95] — Q17 2] 7" [9:]) (66)

If need be, Eq. (64) then yields [,].

6. Concluding Comments

This paper, which appeals to elementary notions of al-
gebraic graph theory, completes the study presented in
Lannes and Gratton 2009. Once the CD ambiguities
have been fixed, particular satellite biases can be esti-
mated and broadcasted to the network users for their
precise point positioning. For example, in the case of
large networks, each of these biases includes three (or
four) terms: a satellite-clock term, a satellite time-group
term, a satellite ionospheric term, and (for the phase)
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a satellite integer ambiguity multiplied by the correspond-
ing wavelength; see Eqgs. (26), (27), (24), (16), (17)
and (18). The form of the PPP equations to be solved
by the network user is then the same as that of the tra-
ditional PPP equations; see Egs. (39) and (40).

As soon as the CD ambiguities are fixed and validated,
estimates of these float biases can be obtained. The cor-
responding operation simply amounts to solving a linear
system whose size is equal to the number of satellites
other than the reference satellite; see Egs. (66) and (65).
The main result of this paper is that no other ambi-
guity is then to be fixed, hence a better efficiency. In
particular, in this approach, it is not necessary to fix
the carrier-phase ambiguities, a problem which cannot
be easily solved; see Sect. 4.4.

The principle of our strategy differs from that of Ge
et al (2005, 2006). Its implementation, which is based on
Property 2, is much simpler. In particular, the CD am-
biguity constraints are imposed in algebraic manner; see
Egs. (41) and (42). The choice of the ionospheric vari-
ables is also based on Property 2; see Egs. (25) to (29).
Furthermore, the satellite-bias information to be broad-
casted to the network user is not the same. At last but
not the least, as already emphasized, this information is
obtained without fixing the carrier-phase ambiguities.
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