
 

 

 

Journal of Global Positioning Systems (2010) 

Vol.9, No.1 :33-40 

DOI: 10.5081/jgps.9.1.33 

 

 

 

Evaluating the Performances of Adaptive Kalman Filter Methods in 

GPS/INS Integration 
 

Ali Almagbile, Jinling Wang, and Weidong Ding 

School of surveying & Spatial Information Systems, University of New South Wales, Sydney, NSW 2052, Australia 

 

 

Abstract 

 

One of the most important tasks in integration of 

GPS/INS is to choose the realistic dynamic model 

covariance matrix Q and measurement noise covariance 

matrix R for use in the Kalman filter. The performance 

of the methods to estimate both of these matrices 

depends entirely on the minimization of dynamic and 

measurement update errors that lead the filter to 

converge. This paper evaluates the performances of 

adaptive Kalman filter methods with different 

adaptations.  Innovation and residual based adaptive 

Kalman filters were employed for adapting R and Q. 

These methods were implemented in a loose GPS/INS 

integration system and tested using real data sets. Their 

performances have been evaluated and compared. Their 

limitations in real-life engineering applications are 

discussed. 

 

Keywords: GPS/INS integration; Kalman filter; 

Adaptive Kalman filter 

_____________________________________________ 

 

1. Introduction 

 

The Kalman filter (KF) technique has been widely 

implemented for GPS/INS integration systems. Kalman 

filters rely on dynamic and stochastic models (e.g., Hu et 

al, 2003) that describe the behaviour of the state vector 

and the relationship between the measurements and the 

state vector respectively. The optimality of Kalman filter 

depends on the quality of prior assumptions about the 

process noise covariance matrix Q and the measurements 

noise covariance R (Mohamed and Schwarz, 1999).  The 

quality of prior assumptions which are determined by 

certain knowledge about the measurements and test 

analysis are crucial factors that lead to the optimality of 

the Kalman filtering technique. For instance, inadequacy 

of prior assumptions to represent the real noise level 

could lead to unreliable results and sometimes to filter 

divergence (Ding et al, 2007). 

 

An adaptive Kalman filter has been used to tune the 

measurement and process noise covariance matrices R 

and Q respectively. Determining the suitable values of R 

and Q plays an important role to obtain a converged 

filter (Mohamed and Schwarz, 1999). For example, 

unreliable results will be yielded in case of determining 

small values of Q and R, on the other side, big diagonal 

element values of Q and R could produce filter 

divergence. Consequently, much attention has been paid 

to determine the disturbance matrices in order to obtain 

optimal Kalman filter parameters especially in GPS/INS 

integration applications (e.g., Mehra, 1970, 1971, 1972; 

Moghaddamjoo and Kirlin, 1989; Mohammad and 

Schwarz, 1999; Wang et al, 1999; Hide et al, 2003; Li 

and Wang, 2006; Ding et al, 2007).  

  

Adaptive Kalman filters have been developed using 

three different scenarios of adaptation. These adaptation 

scenarios are: adapting dynamic noise covariance matrix 

Q, measurement noise covariance matrix R, and the 

initial values of the error covariance matrix P. One of the 

philosophies for the Kalman filtering adaptation is to fix 

P and Q and vary R by trial and error to find the smallest 

value that gives stable state estimates, if this design does 

not give satisfactory performance, P and Q should also 

be varied (Grooves, 2008). Various approaches have 

already been proposed for estimating Q and R matrices.  

Mehra (1972) categorized these approaches as: 

Bayesian, Maximum likelihood, correlation and 

covariance matching methods.  All of these methods 

have been tested in different applications in order to 

achieve high performance of Kalman filtering. For 

instance, the maximum likelihood (ML) method was 

employed in adaptive Kalman filtering (Mohamed and 

Schwarz, 1999). It is noted that this method provides 

reliable results for the GPS/INS integration algorithm. 

However, this method as well as Bayesian method need 

intensive computation and both are based on the 

assumption that the dynamic error is time-invariant, 

which is not realistic (Wang, 1999).  

 

In this paper, three innovation and residual based 

adaptive Kalman filtering techniques have been 

evaluated in a loosely coupled GPS/INS integrated 

system. A comparison has been conducted based on 

covariance analysis, and innovation and residual 
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analysis. Influence of moving window sizes on adaptive 

filtering performance has been investigated. The 

structure of this paper is as follows: in Section 2 

conventional and adaptive Kalman filtering methods are 

introduced. Results and analysis forms Section 3 

followed by the concluding remarks. 

 

2. Adaptive Kalman Filtering 

 

2.1 Conventional Kalman filter  

The linear discrete Kalman filter for a state dynamic and 

measurement models can be expressed as follows:  

 

 111   kkkk wxΦx  (1) 

 

 kkkk vxHz   (2) 

 

kx  is the )1( n state vector;  

kΦ  is the )( nn transition matrix;  

kz  is the )1( r observation vector;  

kH  is the )( nr observation matrix;  

kw and kv are uncorrelated white noise sequences with 

the following mean and covariance: 
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.E denotes the expectation function; 

Q and R are the covariance matrix of process noise and 

measurement errors respectively. 

 

The Kalman filter state prediction and state covariance 

prediction are: 

 

 11ˆ  kkk xΦx  (7) 
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kx̂ denotes the estimated state vector;  

kx  is the predicted state vector for the next epoch;  

kP̂
 
is the estimated state covariance matrix;  

kP
 
is the predicted state covariance matrix.  

The Kalman filter update steps are as follows: 
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 kkkk vKxx ˆ  (11) 

 

 kkkk PHKIP )(ˆ   (12) 

 

kK
 
is the Kalman gain, which defines the updating 

weight between the new measurements and the 

prediction from the system dynamic model. 

 

2.2 Adaptive estimation of covariance matrices Q 

and R  

The covariance matrices Q and R could be estimated 

using Minimum Norm Quadratic Unbiased Estimation 

(MINQUE) which is not suitable for real-time kinematic 

positioning (Wang, 1999). The method has been 

employed to estimate such matrices since it has very 

well-defined properties. One of the drawbacks of this 

method is that it requires iterative procedures which 

depend on the properties of the data and the model 

themselves (Wang et al, 1999). Therefore, it is 

unsuitable for real-time kinematic positioning.  

 

In online stochastic modelling, however adaptive 

Kalman filtering techniques can be adopted since they 

provide online estimation of dynamic and measurement 

noise covariance matrices Q and R respectively. One of 

the adaptive Kalman filtering techniques is covariance 

matching which makes the elements of the innovation or 

residual-based covariance matrix consistent with their 

theoretical values (Maybeck, 1982). The estimated 

covariance matrix of the innovations or residuals should 

match its theoretical form. The innovation kv which is 

the difference between the real observations and its 

predicted value can be computed as follows:  

 

 kkkk xHzv   (13) 

 

The residual kv which is the difference between the real 

observations and its estimated values can be expressed 

as:  

 

 kkkk xHzv ˆ  (14) 

 

Based on the above assumption, the philosophy of 

estimating Q and R matrices takes one of these following 

scenarios:  

 

a) Fixing Q and varying R by trial and error until the 

realisitic values are found that give stable state 
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estimates. In this case the Q matrix should be 

completely known; or  

b) Varying Q matrix  if R is completely known and 

fixed to the certain value, otherwise;  

c) Varying Q and R simultaneously, in this case none 

of them is known and the initial values for both 

matrices should be selected carefully in order to find 

the best stable estimate.   

 

2.2.1 Adaptive estimation of R based on 

innovation sequences  

Following the procedures proposed by (Mehra, 1970, 

1971; Mohamed and Schwarz, 1999; Yang and Xu, 

2003), the measurement noise covariance matrix R can 

be adapted based on the innovation sequences as:  

 

 
T
kkkvk HPHCR  ˆˆ  (15) 

 

vĈ
 
is the estimated variance-covariance V-C matrix of 

the innovation and it can be computed through averaging 

inside a moving window of size m at epoch k (Mohamed 

and Schwarz, 1999): 
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2.2.2 Adaptive estimation of R based on residual 

sequences  

When implementing the innovation based estimation for 

R as in equation (15), the outcomes must be positive 

definite. However, this outcome is not guaranteed since 

two positive definite matrices are subtracted. Therefore, 

Wang et al. (2000) proposed the residual based 

estimation for R in order to get positive definite 

outcomes. In this case the R matrix takes the following 

form (Wang et al, 1999): 

 

 
T
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where vĈ is calculated as: 
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2.2.3 Adaptive estimation of Q  

Estimation of the dynamic noise covariance matrix Q is 

linked with measurement noise covariance matrix R 

since estimation of R requires the predicted state 

covariance
k

P  and hence Q. Based on covariance 

matching principles, R is estimated using innovation or 

residual series based on Equations (15) or (17), 

respectively. 

 

If R and 
k

P  are assumed to be known, Q can be scaled 

through calculating the ratio between the estimated 

innovation covariance and the predicted one (Ding et al, 

2007):  
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By substituting (8) into (19), the scaling factor  takes 

this form: 
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Based on (19) and (20), Q at epoch k can be scaled as: 

 

 1
ˆ

 kk QQ  (21) 

 

The scaling factor  in (21) can be within a range greater 

or less than one. This provides an increase of the 

probability of tuning Q. Nonetheless, the value of   can 

be equal to one when the predicted and estimated 

innovation covariance has the same value. Details of Q 

derivation can be found in (Wang et al, 1999; Ding et al, 

2007). 

 

3. Experiments and Results 

 

3.1 Test configuration  

The data was collected using two dual frequency Leica 

530 GPS receivers with 1Hz sampling rate and one BEI 

C-MIGITSII (DQI-NP) INS unit. One of the receivers 

was set static and the other one along with DQI-NP were 

set on the top of a ground vehicle. The generated moving 

trajectory of the vehicle from ambiguity fixed solution 

has been shown in Figure 2.  

 

 
Figure 1: Ground track 
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Figure.2: Height profile 

 

To process the data, an integrated GPS/INS system has 

been implemented for data fusion and error estimation 

based on complementary form of the extended Kalman 

filter, and INS psi-angle error model. The dynamic 

model includes twenty four states, i.e. nine navigation 

solution errors of three dimensional position, velocity 

and attitude, six accelerometer error modelling 

parameters (bias and scale factors for each axis), three 

gyro drifts, three gravity uncertainty errors, and three 

lever arm errors. 
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v, r and  are the velocity, position, and attitude 

error vectors respectively; 

ieω  is the Earth rate vector; 

inω  is the angular rate vector of the true coordinate 

system with respect to the inertial frame; 

enω  is the angular rate vector of the true coordinate 

system with respect to the Earth; 

  is the accelerometer error vector; 

g  is the error in the computed gravity vector; 

ε  is the gyro drift vector; 

f  is the specific force vector. 

 

Table 1: DQI-NP’s technical data 
 Gyro Accelerometer 

Bias 5 deg/hr 500 g 

Scale factor 500 ppm 800 ppm 

Random 

walk/ white 

noise 

0.035 deg/sqrt(hr) 180 g/sqrt(hr) 

 

Table 1 shows the DQI-NP’s technical data for 

reference. The specified parameters were used in setting 

up the default Q values in the filtering process. The noise 

of GPS derived positions was considered to be non-

correlated between axes with magnitude at the 

centimetre level. The diagonal elements of default R was 

set to 3cm*3cm. A default window size of 15 is used in 

calculating innovation and residual covariance matrix.  

 

3.2 Covariance analysis (RMS) of the estimated 

position, velocity and attitude 

First, the filtering performance was evaluated using 

covariance analysis. The covariance matrix of state 

estimation indicates the theoretical performance of the 

Kalman filter. It is often used for checking the stability, 

and predicting filtering performance during the design 

phase. When a state covariance is growing without 

bound, the filter is said to be diverging. A well 

performed filter would have its state covariance settled 

to a stable value after the initial transient period when 

there are no more external disturbances. For a linear 

conventional Kalman filter, its sate covariance matrix is 

totally determined from given initial conditions, and P 

and Q values without direct link to the actual 

measurements. In contrast, the covariance matrix of an 

adaptive Kalman filter may change during the filtering 

process because it is partially derived from actual 

measurements which are different in different tests.  

 

 
Figure.3: Position RMS in North direction 

 

 
Figure.4: Position RMS in East direction 
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(a) 

 
(b) 

Figure.5: Position RMS in Down direction (a) in full 

vertical scale; (b) in enlarged vertical scale. 

 

Figures 3, 4 and 5 show the RMS of the covariance of 

the position states derived from the diagonal elements of 

the estimated state covariance matrix kP̂ . The 

covariance analysis of velocity and attitude are not 

shown here since they have the similar trends to the 

position states. In general, one can note that all the 

position components (XYZ) are converged below 0.1m 

quickly. In comparison between conventional and the 

adaptive cases, the adaptive ones are slightly better than 

those obtained from the conventional ones. It is obvious 

that the innovation based adaptive method is better in 

terms of converging speed. However, some spikes 

appear between 100 and 200 seconds, and 600 and 700 

seconds with innovation based method, indicating a 

problem in smooth estimation. This issue will be 

discussed later in detail. The residual based method also 

outperforms conventional and Q scale methods in 

converging speed. Overall, all adaptive methods 

demonstrate stable estimation characteristics, and their 

stable RMS values are slightly better than the 

conventional one.  

 

3.3 Innovation and residual analysis  

In order to evaluate the actual filtering performance, the 

innovation series generated during KF filtering are 

examined. In general, the innovation and residual 

analysis provides a more objective view of the actual 

filtering performance. If the dynamic system was 

perfectly modelled in the Kalman filter, both the 

innovation and residual series should be zero-mean 

white noise processes. Unlike the state covariance matrix 

generated by the Kalman filter self, the statistics of 

innovation and residual series are independent and 

faithful filtering quality indicators.  

 

The mean and standard deviation (STD) values of 

conventional and adaptive KFs were listed in Table 2 

and 3. It can be seen that innovation and residual based R 

estimation methods generated better accuracy then the 

conventional one and Q scaling method, and residual 

based method is slightly better than the innovation based 

method. Q scaling method performs worse than the 

conventional one.  The most likely reason is that the 

default settings as given in this test are already very near 

to the best values according to our knowledge. Plus the 

tunning capacity of Q scaling is relying on only one 

parameter, which is to improve the robustness in 

adaptation. It may be as sensitive in the tuning process as 

the other two adaptive methods.  

 

Table 2: Comparing the mean values of the innovation 

series generated from different filtering methods 

  Mean Values 

 X (m) Y (m) Z (m) 

Conventional -0.0020 0.0009 -0.0026 

Inn R -0.0011 0.0005 -0.0015 

Res R -0.0013 0.0007 -0.0015 

Scale Q -0.0097 0.0029 -0.0053 

 

Table 3: Comparing the STD values of the innovation 

series generated from different filtering methods 

  STD Values 

 X (m) Y (m) Z (m) 

Conventional 0.0495 0.0588 0.0169 

Inn R 0.0454 0.0490 0.0201 

Res R 0.0388 0.0415 0.0192 

Scale Q 0.0722 0.0765 0.0391 

 

3.4 Influence of window sizes  

Another comparison was conducted using four different 

window sizes (15, 30, 60 and 120 seconds). This is to 

test the sensitivity of estimated parameters to different 

window sizes used. Earlier studies such as (Mohamed 

and Schwarz, 1999; Ding et al, 2007) found that the 

small window size could lead the filter to diverge 

whereas the larger the moving window, the less biases 

are the estimates. However, very large window size may 

cause the adaptive filter loosing the ability of adaptation. 

So choosing an optimal window size should consider the 

application circumstances, and some defined criteria 

(Wang et al, 1999). In this case, the number of unknown 
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estimates and the measurements should also be 

considered.  

 

3.4.1 R estimation  

Tables 4, 5, 6, and 7 show the statistics of the estimation 

using the innovation and residual based R estimation 

with windows sizes of 15, 30, 60 and 120. In general, no 

significant difference with innovation mean and STD 

values is observed when window size is changed from 

15 to 120. Slightly, window size of 120 seconds 

performs best for innovation based R estimation; and 

window size of 60 seconds performs best for residual 

based R estimation. 

 

Table 4: Comparing the mean values of the innovation 

series generated from the innovation based R estimation  

  Mean Values 

Window 

sizes 
X (m) Y (m) Z (m) 

15 -0.0011 0.0005 -0.0015 

30 -0.0011 0.0008 -0.0015 

60 -0.0011 0.0005 -0.0015 

120 -0.0015 0.0006 -0.0015 

 

Table 5: Comparing the STD values of the innovation 

series generated from the innovation based R estimation  

  STD Values 

Window 

sizes 
X (m) Y (m) Z (m) 

15 0.0454 0.0490 0.0201 

30 0.0462 0.0461 0.0201 

60 0.0419 0.0424 0.0198 

120 0.0363 0.0397 0.0186 

 

Table 6: Comparing the mean values of the innovation 

series generated from the residual based R estimation  

  Mean Values 

Window 

sizes 
X (m) Y (m) Z(m) 

15 -0.0013 0.0007 -0.0015 

30 -0.0013 0.0007 -0.0015 

60 -0.0013 0.0006 -0.0015 

120 -0.0014 0.0007 -0.0015 

 

Table 7: Comparing the mean values of the innovation 

series generated from the residual based R estimation  

  STD Values 

Window 

sizes 
X (m) Y (m) Z (m) 

15 0.0388 0.0415 0.0192 

30 0.0385 0.0414 0.0192 

60 0.0375 0.0407 0.0188 

120 0.0380 0.0415 0.0183 

 

3.4.2 Q estimation  

Figure 6 shows the Q scaling factors calculated with 

different widow sizes. Because of differences in window 

size, the starting points of the displayed values are 

different. After the adaptive algorithm becomes active, a 

transient period is accompanied by an overshoot of the 

estimations. Then gradually the estimated values 

converge to one.  This indicates the adaptation is stable. 

When the scaling factor equals one, the Q actually has 

no more change and the filter behaves like a 

conventional filter. From the figure it can be seen that 

large window size generates a smoother estimation. The 

large overshoot at the beginning of estimation could be 

caused by initial estimation errors, which can be reduced 

using more sophisticated control rules.  

 

 
Figure. 6: Histogram of the estimated scaling factor 

 

Table 8: Comparing the mean values of the innovation 

series generated from the Q scaling method  

 Mean Values 

Window 

size 
X (m) Y (m) Z (m) 

15 -0.0097 0.0029 -0.0053 

30 -0.0017 0.0033 -0.0003 

60 -0.0045 -0.0036 0.0090 

120 0.0005 0.0044 -0.0048 

 

Table 9: Comparing the STD values of the innovation 

series generated from Q scaling method  

 STD 

Window 

size 
X (m) Y (m) Z (m) 

15 0.0722 0.0765 0.0391 

30 0.0651 0.0707 0.0557 

60 0.0640 0.0755 0.1057 

120 0.0801 0.0780 0.0273 

 

Tables 8 and 9 show the statistics of the estimation using 

Q scaling method with window sizes of 15, 30, 60 and 

120. By comparing the STD values, window size of 60 

0 200 400 600 800 1000
0

2

4

6

8

10

12

14
Scales of Q

Epoch

m
u
lt

ip
le

s
 a

t 
e

a
c
h

 e
p

o
c
h

 

 

WindowSize 15

WindowSize 60

WindowSize 120



Almagbile et al.: Evaluating the Performances of Adaptive Kalman Filter Methods in GPS/INS Integration 

39 

seconds generates best results, even though window size 

120 generates the smoothest scale factor estimation.  

 

3.5 Simultaneously adaptation of Q and R  

Full estimation of Q and R based on covariance 

matching is questionable. This is because, as indicated 

by Equations (14) and (17), these two values are relying 

on each other in the covariance matching equation. 

Several tests were carried out on combining Q scaling 

and R estimation. Although stable results have been 

obtained, its performance is not better than those 

obtained from using individual techniques.  

 

3.6 Simultaneously adaptation of Q and R  

a) As mentioned above, one drawback of using 

innovation based R estimation is that the positive 

definite nature of R cannot be guaranteed when 

equation (14) is used, especially when the 

innovation covariance is estimated within a 

relatively small sampling window. This trouble can 

easily cause the filter diverged when handling real 

field data. To deal with this problem, a 

compromised solution is adopted in this work. Each 

time when a new R matrix is calculated, its elements 

are checked and forced to be larger than 1mm
2 

before it is used for filtering process. This ad hoc 

treatment could be the reason that caused the spikes 

mentioned in Section 3.2. The residual based R 

estimation has overcome this drawback.  

 

b) All the three adaptive methods discussed here are 

derived from the principle of covariance matching. 

In the process, when R is to be estimated, Q is 

always supposed to be perfectly known, and vice 

versa. Since perfect Q or R is not known in real data 

processing, they can only be set based on the best 

knowledge. In the implementation, both innovation 

and residual based R estimaties exhibit high 

sensitivity to the errors of Q setting. Proper 

operation of the Q scaling method is also relying on 

reasonable R setting, even though it is bit more 

robust than the other two adaptive methods.    

 

4. Concluding Remarks  

 

Evaluation of adaptive Kalman filters for GPS/INS 

integration is essential for selecting the proper method 

for adapting measurement noise matrix R and dynamic 

noise covariance matrix Q. Over the past decades, 

constant matrices are commonly used in the 

conventional Kalman filter. Various approaches have 

already been implemented for different GPS/INS 

integration algorithms. However, choosing the best 

method that provides reliable results is still a 

controversial issue.  

 

In this paper, three approaches based on covariance 

matching principles of adaptive Kalman filter were 

implemented in loose GPS/INS integration system for 

adapting R and Q. All these methods are based on 

calculations of the covariance matrix of the innovation 

and residual series with a moving sampling window. The 

results show the improvements of adaptive Kalman filter 

methods in different scenarios over the conventional 

Kalman filter, and the comparison of the performance of 

different filtering schemes. Overall, the residual based R 

estimation is considered to be outperforming the 

innovation based R estimation. The Q scaling method is 

considered more robust to modelling deviations, while 

its filtering accuracy is not as good as the performance of 

using the residual based R estimation in certain cases. 

Changing of the moving window size has only minor 

influence on the adaptive filtering performance when the 

application dynamics is not high. Some implementation 

issues have been discussed, which need further 

investigation.  
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