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GNSS Networks in Algebrai
 Graph TheoryA. LannesCNRS/SUPELEC/Univ Paris-Sud∗ (Fran
e)S. GrattonCNES/OMP/DTP∗ (Fran
e)Abstra
t. A new approa
h to GNSS networks is pre-sented. Here, this approa
h is restri
ted to the 
ase wherethe user handles the network data for his own obje
tives:the satellite-
lo
k biases are not estimated. To deal withthe general 
ase where some data are missing, the 
orre-sponding theoreti
al framework appeals to some elemen-tary notions of algebrai
 graph theory. As 
lari�ed in thepaper, the notion of 
losure delay (CD) then generalizesthat of double di�eren
e (DD). The body of the paperis devoted to the impli
ations of this approa
h in GNSSdata pro
essing. One is then led to de�ne lo
al vari-ables, whi
h depend on the su

essive epo
hs of the timeseries, and a global variable whi
h remains the same allover these epo
hs, with however possible state transitionsfrom time to time. In the period de�ned by two su

essivetransitions, the problem to be solved in the least-squaresense is governed by a linear equation in whi
h the keymatrix has an angular blo
k stru
ture. This stru
ture iswell suited to re
ursive QR fa
torization. The state tran-sitions indu
ed by the variations of the GNSS graph arethen handled in an optimal manner. Solving the integer-ambiguity problem via LLL de
orrelation te
hniques isalso made easier. At last but not the least, in 
entralizedmode, this approa
h is parti
ularly well suited to quality
ontrol.Keywords. GNSS, DGPS, RTK. Centralized di�eren
es.Quality 
ontrol, DIA. Ambiguity resolution, LLL.1 Introdu
tionWhen pro
essing times series of global positioning data,one is led to introdu
e `lo
al variables' uk whi
h dependon the su

essive epo
hs tk of the time series to be pro-
essed, and a `global variable' v whi
h remains the sameall over these epo
hs with however possible state transi-

∗This work was also supported by the CERFACS (Fran
e): theEuropean Centre for Resear
h and Advan
ed Training in S
ienti�
Computation.

tions from time to time. For example, the latter o

urwhen some re
eiver-satellite signals appear or disappear.In the period de�ned by two su

essive transitions, theproblem to be solved in the least-square (LS) sense isgoverned by a system of linear equations of the form
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A1u1 +B1v = b1
A2u2 +B2v = b2...
Akuk +Bkv = bk

(1)The de�nition of the variables uk and v depends on theGNSS system under 
onsideration. The 
omponents of ukand v are real numbers, some 
omponents of v being in-tegers: the integer ambiguities of the problem.In matrix terms, Eq. (1) 
an be displayed as follows:
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(2)As spe
i�ed in Se
t. 6.3 of Björ
k 1996 (see also Goluband van Loan 1989, Bierman 1977), the angular blo
kstru
ture of matrix [A B] is well suited to re
ursive QR fa
-torization. When dealing with large-s
ale problems, nu-meri
al a

ura
y 
an thereby be improved.More interestingly, the 
orresponding te
hniques proveto be very e�
ient for GNSS data pro
essing and qual-ity 
ontrol; see, e.g., Tiberius (1998), and Loehnert etal (2000). This is parti
ularly the 
ase for the GNSS 
en-tralized approa
hes (see Lannes and Gratton 2008). Inparti
ular, in the quality-
ontrol pro
edures, the identi�-
ation of biases is then made easier. The approa
h pre-sented in Lannes and Gratton (2008) was restri
ted to thesimple 
ase of 
ontinuous observations in RTK mode witha lo
al-s
ale single baseline (see, e.g., Table 1 in Feng andLi 2008). The aim of the present paper is to extend thisapproa
h to the general 
ase of the GNSS networks.
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 graph theory 53Other approa
hes have already been developed in this�eld. In parti
ular, to raise the integer ambiguities ina simple manner, appropriate linear 
ombinations of theoriginal signals 
an be 
onsidered. The 
orrespondingwidelane te
hniques are very popular; see, e.g., Feng andLi (2008). This pointed out, when di�erent approa
hesrefer to the same physi
al models, the results must of
ourse be the same. The best approa
h is then the mostgeneral and the most e�
ient. For example, with regardto integer-ambiguity resolution, the de
orrelating prop-erties of the widelane te
hniques are not optimal (seeTeunissen, 1997). Likewise, the prin
iple of the quality-
ontrol pro
edures must be well embedded in the theo-reti
al framework of the sele
ted approa
h.2 Observational equationsThe global positioning te
hniques are based on the fol-lowing observational equations. For ea
h frequen
y ν, forea
h re
eiver-satellite pair (i, j) ≡ (ri , sj), and at ea
hepo
h t, the 
arrier-phase and 
ode data are respe
tivelyof the form (see, e.g., Mer
ier and Lauri
hesse 2008)
Φν,t(i, j) = ρt(i, j) + Tt(i, j) − ανIt(i, j)

+ [f
(r)
φ;t(i) − f

(s)
φ;t(j)] − αν [g

(r)
φ;t(i) − g

(s)
φ;t(j)]

+ λνNν(i, j) + εφ;ν,t(i, j)

(3)
Pν,t(i, j) = ρt(i, j) + Tt(i, j) + ανIt(i, j)

+ [f
(r)
p;t (i) − f

(s)
p;t (j)] + αν [g

(r)
p;t(i) − g

(s)
p;t(j)]

+ εp;ν,t(i, j)

(4)In these equations, whi
h are expressed in length units,
ρt(i, j) is the re
eiver-satellite range: the distan
e be-tween satellite sj (at the time t − τ where the signal isemitted) and re
eiver ri (at the time t of its re
eption);
Tt(i, j) and It(i, j) are the tropospheri
 and ionospheri
delays, respe
tively. Here,
αν = ν2

1/ν
2 = λ2

ν/λ
2
1 (5)The λν 's denote the wavelengths of the 
arrier waves.Note that αν1 = 1. The integers Nν(i, j) are the integer
arrier-phase ambiguities: Nν(i, j) ∈ Z.The instrumental delays and 
lo
k errors that for a givenepo
h depend only on ri are lumped together in the `ex-tended re
eiver-
lo
k biases' f (r)

φ;t(i), f (r)
p;t (i). Likewise,the instrumental delays and 
lo
k errors that for a givenepo
h depend only on sj are lumped together in the `ex-tended satellite-
lo
k biases' f (s)

φ;t(j) and f (s)
p;t (j).Similarly, g(s)

φ;t, g(r)
p;t(i) and g(s)

φ;t(j), g(s)
p;t(j) denote the biasesindu
ed by the time group delays.In this model, whi
h will be re�ned in Se
t. 9 for quality
ontrol (see Eq. (112)), the expe
tation values of the noiseterms εφ;ν,t(i, j) and εp;ν,t(i, j) are supposed to be nought.

In this paper, we also assume that these noises are notmutually 
orrelated.A priori, on the grounds of Eqs. (3) and (4), two op-tions are to be 
onsidered. In the �rst one, the extendedsatellite-
lo
k biases f (s)
φ,t(j) and f (s)

p,t (j) are not estimated.This option is well suited to a user who deals with thenetwork data for his own obje
tives. In the se
ond one,these biases are to be estimated; they are broad
astedto the network users for their pre
ise point positioning(PPP). The present paper, whi
h 
ompletes the original
ontribution of Lannes (2008), is devoted to the �rst op-tion only. The se
ond will be dealt with in a forth
oming
ontribution.For our present purposes, we write the observational equa-tions (3) and (4) in the form
Φν,t(i, j) = ρt(i, j) + Tt(i, j) − ανIt(i, j) + λνNν(i, j)

+ ϕ
(r)
φ;ν,t(i) + ϕ

(s)
φ;ν,t(j) + εφ;ν,t(i, j)

(6)
Pν,t(i, j) = ρt(i, j) + Tt(i, j) + ανIt(i, j)

+ ϕ
(r)
p;ν,t(i) + ϕ

(s)
p;ν,t(j) + εp;ν,t(i, j)

(7)where
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ϕ
(r)
φ;ν,t(i) := f

(r)
φ;t(i) − ανg

(r)
φ;t(i)

ϕ
(s)
φ;ν,t(j) := −[f

(s)
φ;t(j) − ανg

(s)
φ;t(j)]

(8)and
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ϕ
(r)
p;ν,t(i) := f

(r)
p;t (i) + ανg

(r)
p;t(i)

ϕ
(s)
p;ν,t(j) := −[f

(s)
p;t (j) + ανg

(s)
p;t(j)]

(9)3 Preliminary notionsWe �rst introdu
e the notion of `GNSS grid' and the re-lated 
on
ept of `GNSS graph' (Se
t. 3.1). We then de-�ne the GNSS spa
es to be 
onsidered (Se
t. 3.2). Thefun
tions lying in these spa
es 
an be de
omposed in a`di�erential manner.' The related notion is introdu
ed inSe
t. 3.3. The observational equations are then rewrittena

ordingly (Se
t. (3.4).3.1 GNSS grid and GNSS graphLet ϑ(i, j) be a fun
tion su
h as Φν,t(i, j) or ρt(i, j) forexample. Su
h a fun
tion takes its values on the pointsof a re
tangular grid G0. When the GNSS devi
e in-
ludes m re
eivers and n satellites, G0 has m lines and
n 
olumns. More pre
isely, as some data may be missing,the values of ϑ are de�ned on ne grid points with
ne ≤ mn (10)In the example presented in the upper part of Fig. 1,these points are surrounded by a small 
ir
le. They form
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Figure 1: GNSS grid G and GNSS graph G.In the example shown here, the GNSS graphin
ludes 7 verti
es (3 re
eivers and 4 satellites)and nine edges; m = 3, n = 4, ne = 9. Thedata 
orresponding to the re
eiver-satellitepairs (r1, s2), (r2, s3) and (r3, s1) are missing.a subgrid of G0 denoted by G: the GNSS grid. (Notethat G impli
itly depends on t.) As illustrated in thelower part of this �gure, the points (i, j) of G 
orrespondto the `edges' (ri , sj) of the GNSS graph to be 
onsidered;
E denotes the set of its edges; ne is their number. There
eivers and the satellites involved in the de�nition ofthese edges de�ne the `verti
es' of this graph; V denotesthe set of its verti
es, and nv their number:
nv = m+ n (11)A GNSS graph G is therefore de�ned by the pair (V , E):
G ≡ G(V , E)Su
h a graph is 
onne
ted (e.g., Biggs 1996): given anytwo verti
es of V , there exists a path of edges of E 
on-ne
ting these verti
es. When ne = mn, the GNSS graphis said to be `full.' Note that a full GNSS graph is not`
omplete:' mn < nv(nv − 1)/2.3.2 Edge-delay spa
esA fun
tion ϑ taking its values on G, and thereby on E , 
anbe regarded as a ve
tor of the `edge-delay spa
e' E ≡ R

ne .The values of ϑ on G are then regarded as the 
omponentsof ϑ in the standard basis of this spa
e. The norm in Eis therefore de�ned by the relation
‖ϑ‖2

E =
∑

(i,j)∈G

|ϑ(i, j)|2 (12)We now adopt the notation a

ording whi
h Ψψ,t standsfor Φν,t if ψ = (φ; ν), or for Pν,t if ψ = (p; ν). Thevarian
e-
ovarian
e matrix of Ψψ,t is denoted by [Vψ,t].Let us then 
onsider a fun
tion ϑ of type ψ, for example

a phase observational residual. At epo
h t, the quadrati
size of su
h a fun
tion is de�ned by the relation
‖ϑ‖2

ψ,t := [ϑ]T[Vψ,t]
−1[ϑ]

≡ (ϑ · V −1
ψ,t ϑ)

(13)Here, [ϑ], is the 
olumn matrix whose entries are the
omponents of ϑ on G; ( · ) is the inner produ
t of theEu
lidean spa
e E. The spa
e of fun
tions ϑ with innerprodu
t
〈ϑ′ | ϑ〉ψ,t := (ϑ′ · V −1

ψ,t ϑ) (14)is denoted by Eψ,t. This spa
e 
an be referred to as the`edge-delay spa
e' of type ψ at epo
h t.Let us now introdu
e the following Cholesky fa
torizationof the inverse of [Vψ,t]:
[Vψ,t]

−1 = [Uψ,t]
T[Uψ,t] (15)Here, [Uψ,t] is an invertible upper-triangular matrix. Set-ting

ϑE
ψ,t := Uψ,t ϑ (16)we have, from Eqs. (13) and (15),

‖ϑ‖2
ψ,t = ‖ϑE

ψ,t‖2
E (17)3.3 Di�erential de
omposition of theedge-delay fun
tionsTo introdu
e the reader to this notion, we �rst restri
tourselves to the spe
ial 
ase where the GNSS graph isfull: G = G0 (ne = mn). The extension to the general
ase derives from the analysis presented in Se
t. 4.2.In the spe
ial 
ase under 
onsideration (see Fig. 2), thenotion of `single di�eren
e' (SD) is asso
iated with thefollowing operation on G0:

ϑ[sd](i, j) := ϑ(i, j) − ϑ(1, j) (18)Here, r1 is the sele
ted referen
e re
eiver: ϑ[sd] vanisheson the �rst line of G0. Let s1 now be the referen
esatellite. The notion of `double di�eren
e' (DD) is thenthrough the relation
ϑ[dd](i, j) := ϑ[sd](i, j) − ϑ[sd](i, 1) (19)By 
onstru
tion, ϑ[dd] vanishes on the �rst line and onthe �rst 
olumn of G0 (see Fig. 2). From Eq. (18), wehave
ϑ[dd](i, j) = [ϑ(i, j) − ϑ(1, j)] − [ϑ(i, 1) − ϑ(1, 1)]

= ϑ(i, j) − ϑ(i, 1) − [ϑ(1, j) − ϑ(1, 1)]As a result, any edge-delay fun
tion ϑ 
an be de
omposedin the form
ϑ(i, j) = ϑ[r](i) + ϑ[s](j) + ϑ[dd](i, j) (20)
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Figure 2: Full GNSS grid. In the spe
ial
ase where the GNSS graph is full, the double-di�eren
e fun
tion ϑ[dd] is de�ned by its valueson the (m− 1)(n − 1) points shown here as reddots; see Eq. (19). By 
onstru
tion, ϑ[dd] van-ishes on the other points shown as bla
k dots.where
ϑ[r](i) := ϑ(i, 1) (21)and
ϑ[s](j) := ϑ(1, j) − ϑ(1, 1) (22)As it is the 
ase here, throughout this paper, the referen
esatellite, here s1, de�nes the origin of the re
eiver andsatellite delays: ϑ[s](1) = 0.The integer-valued fun
tion Nν(i, j), in parti
ular, 
antherefore be de
omposed in the form
Nν(i, j) = N [r]

ν (i) +N [s]
ν (j) +N [dd]

ν (i, j) (23)where
N [r]
ν (i) := Nν(i, 1) (24)and

N [s]
ν (j) := Nν(1, j) −Nν(1, 1) (25)3.4 Referen
e equationsA

ording to Eq. (23), the phase equation (6) 
an beexpanded in the form
Φν,t(i, j) = ρt(i, j) + Tt(i, j) − ανIt(i, j)

+ λνN
[dd]
ν (i, j)

+ ϕ̃
[r]
φ;ν,t(i) + ϕ̃

[s]
φ;ν,t(j) + εφ;ν,t(i, j)

(26)in whi
h
∣

∣

∣

∣

∣

∣

ϕ̃
[r]
φ;ν,t(i) := ϕ

[r]
φ;ν,t(i) + ϕ

[s]
φ;ν,t(1)

ϕ̃
[s]
φ;ν,t(j) := ϕ

[s]
φ;ν,t(j) − ϕ

[s]
φ;ν,t(1)

(27)where
∣

∣

∣

∣

∣

∣

ϕ
[r]
φ;ν,t(i) := ϕ

(r)
φ;ν,t(i) + λνN

[r]
ν (i)

ϕ
[s]
φ;ν,t(j) := ϕ

(s)
φ;ν,t(j) + λνN

[s]
ν (j)

(28)Note that, by 
onstru
tion, ϕ̃[s]
φ;ν,t(1) = 0. The quantities

ϕ̃
[r]
φ;ν,t(i) and ϕ̃[s]

φ;ν,t(j) for j 6= 1 are then regarded as realvariables without any physi
al interest. The integer vari-ables are then the DD ambiguities N [dd]
ν (i, j) for i 6= 1and j 6= 1; see Fig. 2. The other variables, those indu
edby the terms ρt, Tt and It via the linearization of theproblem, are introdu
ed in Se
t. 5.The 
ode equation (7) is then written in the form

Pν,t(i, j) = ρt(i, j) + Tt(i, j) + ανIt(i, j)

+ ϕ
[r]
p;ν,t(i) + ϕ

[s]
p;ν,t(j) + εp;ν,t(i, j)

(29)where (see (Eq. (9))
∣

∣

∣

∣

∣

∣

ϕ
[r]
p;ν,t(i) := ϕ

(r)
p;ν,t(i) + ϕ

(s)
p;ν,t(1)

ϕ
[s]
p;ν,t(j) := ϕ

(s)
p;ν,t(j) − ϕ

(s)
p;ν,t(1)

(30)Note that ϕ[s]
p;ν,t(1) = 0. The quantities ϕ[r]

p;ν,t(i) and
ϕ

[s]
p;ν,t(j) for j 6= 1 are other real variables of the prob-lem.4 Theoreti
al frameworkWe �rst introdu
e some elementary notions of algebrai
graph theory (Se
t. 4.1). We then establish the generalproperties underlying our approa
h (Se
t. 4.2).4.1 GNSS spanning tree and loopsAs illustrated in Fig. 3, a spanning tree of G ≡ G(V , E)is a subgraph Gst ≡ G(V , Est) formed by nv verti
es and
nv − 1 edges, with no `
y
le' in it. Here, `
y
le' is used inthe sense de�ned in algebrai
 graph theory (Biggs 1996).In the GNSS 
ommunity, to avoid any 
onfusion with theusual notion of wave 
y
le, it is not forbidden to substi-tute the term of `loop' for that of `
y
le.' In this 
ontext,the number of loops de�ned through a given �xed (butarbitrary) spanning tree is the number of edges of E thatdo not lie in Est . These edges,
c(q) := (ri(q) , sj(q)) (31)are said to be `loop-
losure edges' (see Fig. 3). Theirnumber is denoted by nc:
nc = ne − (nv − 1) (nv = m+ n, ne ≤ mn) (32)To sele
t a GNSS spanning tree, the edges of E are �rstordered somehow. The 
orresponding sequen
e is of theform
e(q) := (riq , sjq) (q = 1, . . . , ne)The algorithm is then the following: set q = 0, nst = 0,and Est = ∅ (the empty set). Then,
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Figure 3: GNSS spanning tree and loops. Thebla
k edges of G (the graph introdu
ed in Fig. 1)are the edges of the sele
ted spanning tree Gst.The points of the 
orresponding subgrid Gst areshown as bla
k dots. The remaining points of G(the red dots of G) 
orrespond to the loop-
losureedges (the red edges of G). We then have one loopof order 4, and 2 loops of order 6: (r2 , s4 , r1 , s1),
(r3, s3, r1, s1, r2, s2) and (r3, s4, r1, s1, r2, s2).1. If nst = nv − 1, terminate the pro
ess; otherwise,set q set

= q + 1.2. When the verti
es of e(q) are not 
onne
ted viaedges of Est, set Est
set

= Est ∪ {e(q)} and nst
set

= nst + 1;then go to step 1.The subgrid of G 
orresponding to the edges of Est isdenoted by Gst. By 
onstru
tion, the spanning tree thusfound depends on how the edges are ordered.Example 4.1. To show, in 
on
rete manner, how thisalgorithm works, we now 
onsider its a
tion on the grid Gof Fig. 3, its points being ordered line by line.The points of the �rst line of G, the points (1, 1), (1, 3)and (1, 4), de�ne the �rst 3 edges of Est:
Est

set

= {(r1, s1), (r1, s3), (r1, s4)} (nst = 3)By 
onstru
tion, four verti
es of G are then 
onne
ted:
r1, s1, s3 and s4.The next point of G, the �rst point of line 2, is asso
iatedwith edge (r2, s1). As r2 and s1 are not 
onne
ted viaedges of Est, this edge 
annot be not a loop-
losure edge.We therefore set
Est

set

= Est ∪ {(r2, s1)} (nst = 4)Five verti
es are then 
onne
ted: r1, s1, s3, s4 and r2.The next point of line 2 is asso
iated with edge (r2, s2).As r2 and s2 are not 
onne
ted via edges of Est, we set
Est

set

= Est ∪ {(r2, s2)} (nst = 5)Six verti
es are then 
onne
ted: r1, s1, s3, s4, r2 and s2.

The next point of G, the last point of line 2, is asso
iatedwith edge (r2, s4). As r2 and s4 are already 
onne
ted,this edge 
loses a loop with some edges of Est. As a result,this edge is the �rst loop-
losure edge: c(1) = (r2, s4); seeEq. (24). The 
orresponding loop, (r2 , s4 , r1 , s1), is oforder 4: it in
ludes 4 edges (see Fig. 3).The next point of G, the se
ond point of line 3, is asso-
iated with edge (r3, s2). As r3 and s2 are not 
onne
tedvia edges of Est, we then set
Est

set

= Est ∪ {(r3, s2)} (nst = 6)As all the verti
es of E are then 
onne
ted, the algorithmstops: Est is then 
ompletely de�ned.The remaining points of line 3 therefore de�ne two loop-
losure edges: c(2) = (r3, s3) and c(3) = (r3, s4). Theseloops are of order 6; see Fig. 3.Remark 4.1. In the spe
ial 
ase of the graph shown inFig. 3, there exist spanning trees for whi
h the three loopsare of order 4. In general, the 
hoi
e of the spanning treeis arbitrary; see however Remark 4.2.Remark 4.2. As expli
itly shown in Se
t. 7.4.3, to han-dle some `graph transitions,' one is led to order the pointsof G in a more subtle manner. To write down the al-gorithm yielding the 
orresponding spanning tree, thereader is invited to build the spanning trees de�ned inthe example given in that se
tion (Example 8.1).Remark 4.3. In the spe
ial 
ase examined in Se
t. 3.3,the GNSS graph is full: G = G0. The points of Gst ob-tained by spanning G0 line by line are then the n pointsof its �rst line, and the remaining m−1 points of its �rst
olumn (see Fig. 2). The other points, whi
h form a sub-grid with m−1 lines and n−1 
olumns, then 
orrespondto loop-
losure edges. All the loops are then of order four.4.2 Referen
e propertiesA

ording to the properties established in this se
tion,the analysis presented in Se
t. 3.3 
an be extended to thegeneral 
ase of GNSS networks with missing data. We�rst introdu
e the key notion of `vertex-delay spa
e.'Vertex-delay spa
e. The fun
tions of the form
ϕ(i, j) = ϕ[r](i) + ϕ[s](j) (with ϕ[s](1) = 0) (33)form a subspa
e of the edge-delay spa
e E. This sub-spa
e, denoted by F , 
an be referred to as the vertex-delay spa
e. By de�nition, the `re
eiver-delay spa
e' E[r]is the spa
e of fun
tions ϕ[r](i). Similarly, the `satellite-delay spa
e' E[s] is the spa
e of fun
tions ϕ[s](j) su
h that
ϕ[s](1) = 0. By 
onstru
tion, F is the dire
t sum of E[r]and E[s]:
F = E[r] + E[s] (34)
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dimE[r] = m dimE[s] = n− 1 (35)and
dimF = dimE[r] + dimE[s] = nv − 1 (36)Property 1. Given any edge-delay fun
tion ϑ taking itsvalues on G, for ea
h spanning tree Gst of G, there existsa unique set of re
eiver and satellite delays
Θ :=

{

ϑ[r](i)
}m

i=1
∪
{

ϑ[s](j)
}n

j=1
with ϑ[s](1) = 0su
h that ϑ(i, j) = ϑ[r](i) + ϑ[s](j) on the points of Gst.More 
on
retely, the following pro
ess provides these de-lays in a re
ursive manner.∗Re
ursive di�erential pro
ess. Set ϑ[s](1) = 0; then,span the points of Gst line by line (see Fig. 3). For ea
hpoint (i, j) thus en
ountered, then pro
eed as follows.If ϑ[s](j) has already been �xed, and ϑ[r](i) is not �xedyet, set

ϑ[r](i) = ϑ(i, j) − ϑ[s](j)If ϑ[r](i) has already been �xed, and ϑ[s](j) is not �xedyet, set
ϑ[s](j) = ϑ(i, j) − ϑ[r](i)To obtain all these delays, Gst is to be spanned in thisway as many times as required. The delay set Θ is unique.Indeed, applied to a fun
tion ϑ vanishing on the pointsof Gst, this re
ursive pro
ess provides nought delays.It is important to point out that the only operations in-volved in this pro
ess are di�eren
es. As a result, if ϑ isan integer-valued fun
tion, the re
eiver and satellite de-lays ϑ[r](i) and ϑ[s](j) lie in Z.Example 4.2. To illustrate this re
ursive di�erentialpro
ess, we now follow its a
tion on the grid Gst of Fig. 3.As ϑ[s](1) is nought, we then obtain su

essively:
ϑ[r](1) = ϑ(1, 1) − ϑ[s](1) = ϑ(1, 1)

ϑ[s](3) = ϑ(1, 3) − ϑ[r](1)

ϑ[s](4) = ϑ(1, 4) − ϑ[r](1)

ϑ[r](2) = ϑ(2, 1) − ϑ[s](1) = ϑ(2, 1)

ϑ[s](2) = ϑ(2, 2) − ϑ[r](2)

ϑ[r](3) = ϑ(3, 2) − ϑ[s](2)Closure delays. A

ording to Property 1, the quantities
ϑ[cd](i, j) := ϑ(i, j) −

[

ϑ[r](i) + ϑ[s](j)
] (37)

∗This type of re
ursive pro
ess was introdu
ed for the �rst timein `phase-
losure imaging;' see Se
t. 2E in Lannes (2005).

vanish on the points of Gst. The values of ϑ[cd] of inter-est are therefore de�ned on the remaining points of G,i.e., on the nc loop-
losure edges of G (see Fig. 3 andEq. (32)). These quantities 
an therefore be referred toas the `
losure delays' of ϑ, hen
e the notation 
d or CD.Remark 4.4. The notion of 
losure delay generalizesthat of double di�eren
e; see Eq. (20), Figs. 2 and 3. Infa
t, the CD's are algebrai
 sums of SD's. For example,with regard to Example 4.2, the 
losure delay ϑ[cd](3, 4)
an be displayed as follows (see Fig. 3):
[ϑ(3, 4)−ϑ(1, 4)] + [ϑ(1, 1)−ϑ(2, 1)] + [ϑ(2, 2)−ϑ(3, 2)]Property 2. Any edge-delay fun
tion ϑ taking its valueson G 
an be de
omposed in the form
ϑ(i, j) = ϑ[r](i) + ϑ[s](j) + ϑ[cd](i, j)For a given spanning tree, this de
omposition is unique.This property is a simple trans
ription of Eq. (37). Theuniqueness of this de
omposition results from Property 1.Example 4.3. With regard to the GNSS grid of Fig. 3,let us 
onsider (for simpli
ity) the ambiguity fun
tion
N :

2 ∗ 1 −1

−1 1 ∗ 1

∗ −2 2 −1The re
ursive di�erential pro
ess of Example 4.2 appliedto this fun
tion yields the following 
omponents of N :
N [r] :

2 ∗ 2 2

−1 −1 ∗ −1

∗ −4 −4 −4

N [s] :

0 ∗ −1 −3

0 2 ∗ −3

∗ 2 −1 −3

N [cd] :

0 ∗ 0 0

0 0 ∗ 5

∗ 0 7 6Closure-delay spa
e.The fun
tions ϑ thatvanish onGstform a subspa
e of E denoted by E[cd]. This spa
e is re-ferred to as the `
losure-delay spa
e.' For example, when
G is full, E[cd] is the 
orresponding DD spa
e E[dd]. FromEq. (32), we have
dimE[cd] = nc (38)A

ording to Property 2, E is the `oblique dire
t sum' of
E[r], E[s] and E[cd]:
E = E[r] + E[s] + E[cd] (39)
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ount of Property 2, the phase equation (26)is then written in the form
Φν,t = ρt + Tt − ανIt + λνN

[cd]
ν + ϕ̃φ;ν,t + εφ;ν,t (40)where ϕ̃φ;ν,t := ϕ̃

[r]
φ;ν,t + ϕ̃

[s]
φ;ν,t.Likewise, in terms of fun
tions taking their values ongrid G, the 
ode equation (29) is now read as follows:

Pν,t = ρt + Tt + ανIt + ϕp;ν,t + εp;ν,t (41)Here, ϕp;ν,t := ϕ
[r]
p;ν,t + ϕ

[s]
p;ν,t.As spe
i�ed in this se
tion, the problem 
an then bestated in the terms of Eq. (1); see the 
ontext of thatequation.At this level, depending on the network geometry, some
onstraints may be introdu
ed. For example, when thelength of baseline ri1↔ ri2 is su�
iently small, the 
on-straints Tt(i1, j) = Tt(i2, j) and It(i1, j) = It(i2, j) are tobe imposed. In most 
ases en
ountered in pra
ti
e, thevariablesρt(i, j), Tt(i, j) and It(i, j) are linearly expandedin terms of other variables. In the general 
ase, some ofthe latter depend on t, while others not; see, e.g., Fengand Li (2008). In other terms, the �rst ones are `lo
al'variables, while the others are `global' with however pos-sible transitions from time to time.In the approa
h presented in this paper, the lo
al vari-ables ϕ̃φ;ν,t and ϕp;ν,t are regarded as parti
ular variablesof the problem. The other lo
al variables, su
h as thoseinvolved in the linearization of ρt and Tt, are lumped to-gether in some variable ut. In general, the global variable

v in
ludes two blo
ks:
v =

[

vb
va

] (42)The entries of va are the integer CDambiguitiesN [cd]
ν (i, j).The entries of vb are simple real numbers. For example,when the position of some re
eivers and It(i, j) are ex-panded as polynomial fun
tions of t, the entries of vb arethe 
orresponding unknowns. This is also the 
ase whenorbital parameters are to be retrieved.As is well known, in a �rst step (see Se
t. 8 for the se
-ond), the integer variables are also dealt with as `�oatvariables,' i.e., as simple real variables.Let us denote by S̄k := {s1 , s2 , . . . , sn̄k} the series ofsatellites involved in the pro
ess until epo
h tk in
luded.A given satellite may disappear and reappear in the samerun. Su
h a satellite is then regarded as a new satellite. Inother words, whenever this o

urs, a new satellite is addedat the end of this series. The nk satellites of epo
h tk forma subset Sk of S̄k: nk ≤ n̄k.To introdu
e the reader to what is essential, we �rst re-stri
t ourselves to the 
ase where the GNSS graph G does

not 
hange in the 
urrent run [t1, . . . , tκ, . . . , tk]: no statetransition o

urs in this interval. In this 
ase, we of 
oursehave nk = n̄k.5.1 Optimization prin
ipleIn the 
ontext previously de�ned, the observational equa-tions (40) and (41) therefore lead to equations of the form
Ψ̃ψ,κ = Aψ,κuκ + Bψ,κv + ϕψ,κ + εψ,κ (43)with ϕψ,κ in F . For 
larity, κ stands for tκ; Ψψ,κ thusstands for Φν,κ if ψ = (φ; ν), or for Pν,κ if ψ = (p; ν);

Aψ,κ and Bψ,κ are linear operators. The notation Ψ̃ψ,κmeans that the zero-order terms of this linearization aretaken into a

ount; see, e.g., Eqs. (14), (17) and (18)in Lannes and Gratton (2008). Here, the variable ϕψ,κ
orresponds to the quantities ϕ̃φ;ν,t and ϕp;ν,t of Eqs. (40)and (41), respe
tively.The problem is to minimize the obje
tive fun
tional (seeEq. (13))
F(u1, . . . , uκ, . . . , uk, v; . . . , ϕφ;ν,κ, ϕp;ν,κ , . . .)

:=

k
∑

κ=1

∑

ν

ψ=(p;ν)
∑

ψ=(φ;ν)

‖θψ(uκ, v) − ϕψ,κ‖2
ψ,κ

(44)where, from Eq. (43),
θψ(uκ, v) := Ψ̃ψ,κ − (Aψ,κuκ + Bψ,κv) (45)For ea
h frequen
y, the sum in ψ in
ludes two terms, aphase term and a 
ode term, hen
e the notation adoptedin Eq. (44).In our approa
h, this minimization is performed in twosteps. The �rst step is to minimize F in the variables
ϕφ;ν,κ and ϕp;ν,κ for κ = 1, . . . , k, and for ea
h κ, forall ν. We now 
larify this point.Given any ϑ in E, in parti
ular for θψ(uκ, v), let us set
ϕo
ψ,κ := argmin

ϕ∈F
‖ϑ− ϕ‖2

ψ,κ (46)As illustrated in Fig. 4., ϕo
ψ,κ is the point of F 
losestto ϑ, the distan
e being that indu
ed by the norm de-�ned on Eψ,κ; ϕo

ψ,κ is therefore the proje
tion of ϑ on Fin Eψ,κ:
ϕo
ψ,κ := Pψ,κϑ (47)Let us now denote by P ′

ψ,κ the proje
tion (operator) of Eψ,κonto the orthogonal 
omplement of F :
P ′
ψ,κϑ := ϑ− Pψ,κϑ (48)From Eq. (44), the se
ond step, the heart of the problem,is therefore to minimize the redu
ed fun
tional
Fr(u1, . . . , uκ, . . . , uk, v)

:=

k
∑

κ=1

∑

ν

ψ=(p;ν)
∑

ψ=(φ;ν)

∥

∥P ′
ψ,κθψ(uκ, v)

∥

∥

2

ψ,κ

(49)
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V −1
ψ,κϑ

′
ψ,κ

r

ϑ′ψ,κ

r

ϑr

ψ,κ

0

r

ϕo
ψ,κ

r
ϑ

rϑ[cd]

E, Eψ,κ

F

F ′

F ′
ψ,κFigure 4: Centralization and redu
tion. In this ge-ometri
al illustration, Eψ,κ is the edge-delay spa
eof type ψ at epo
h tκ (see Se
t. 3.2); F is thevertex-delay spa
e; F ′

ψ,κ is the orthogonal 
omple-ment of F in Eψ,κ, whereas F ′ is the orthogo-nal 
omplement of F in the Eu
lidean spa
e E.The fun
tions lying in F ′ satisfy the `
entralizationproperty' 4; ϕo
ψ,κ is the orthogonal proje
tion of ϑon F in Eψ,κ, whereas ϑ′

ψ,κ is the orthogonal pro-je
tion of ϑ on F ′

ψ,κ: ϑ′

ψ,κ = ϑ − ϕo
ψ,κ. A

ordingto Property 3, V −1

ψ,κϑ
′

ψ,κ lies in F ′. By de�nition,
ϑr

ψ,κ is equal to Uψ,κϑ′

ψ,κ where Uψ,κ is de�ned viaEq. (15). The norm of ϑ′

ψ,κ in Eψ,κ is equal tothat of ϑr

ψ,κ in E; see Eqs. (56) and (12). As justi-�ed in Se
t. 5.3, ϑr

ψ,κ is said to be the `ψ-redu
edform' of ϑ. Note that V −1
ψ,κϑ

′

ψ,κ = UT
ψ,κϑ

r

ψ,κ. In thespe
ial 
ase where the varian
e-
ovarian
e matrixof Ψψ,κ is proportional to the identity, F ′ 
oin
ideswith F ′

ψ,κ.5.2 Related propertiesDenoting by F ′ the orthogonal 
omplement of F in E, wethen have the following property (see Fig. 4):Property 3. The ve
tor ϕo
ψ,κ is the ve
tor ϕ of F forwhi
h V −1

ψ,κ (ϑ− ϕ) lies in F ′.Indeed, for any ξ in F , we have
‖ϑ− (ϕo

ψ,κ + ξ)‖2
ψ,κ = ‖ϑ− ϕo

ψ,κ‖2
ψ,κ + ‖ξ‖2

ψ,κ

+ 2〈ξ | ϑ− ϕo
ψ,κ〉ψ,κhen
e the property from Eqs. (46) and (14).As spe
i�ed below, the fun
tions of F ′ satisfy parti
ular`
entralization properties.'A

ording to its de�nition (see Fig. 4), F ′ is the spa
e offun
tions ϑ su
h that

∑

(i,j)∈G

ϕ(i, j)ϑ(i, j) = 0 (for any ϕ in F ) (50)From Eq. (33), the term on the left-hand side of this

equation 
an be expanded in the form
∑

(i,j)∈G

[

ϕ[r](i) + ϕ[s](j)
]

ϑ(i, j)

=

m
∑

i=1

ϕ[r](i)
∑

j∈Li

ϑ(i, j)

+
n
∑

j=2

ϕ[s](j)
∑

i∈Cj

ϑ(i, j)Here, Li is the subset of G 
hara
terizing its ith line:
Li := {j : (i, j) ∈ G, i being �xed} (51)Likewise, Cj is the subset of G 
hara
terizing its jth 
ol-umn:
Cj := {i : (i, j) ∈ G, j being �xed} (52)The following property then results from Eq. (50):Property 4. The fun
tions lying in F ′ satisfy the fol-lowing 
onditions:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ϑ(i, j) = 0 (for i = 1, . . . ,m)
∑

i∈Cj

ϑ(i, j) = 0 (for j = 2, . . . , n)Note that the se
ond 
ondition then also holds for j = 1.For any ϑ in F ′, we thus have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ϑ(i, j) = 0 (for i = 1, . . . ,m)
∑

i∈Cj

ϑ(i, j) = 0 (for j = 1, . . . , n)In the spe
ial 
ase where the GNSS graph is full, thelines and 
olumns of G are also full. One then retrievesthe 
hara
terization property of the `double-
entralizedfun
tions' of Shi and Han (1992):
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

j=1

ϑ(i, j) = 0 (for i = 1, . . . ,m)
m
∑

i=1

ϑ(i, j) = 0 (for j = 1, . . . , n) (53)5.3 Redu
ed equationsA

ording to Eqs. (17) and (16), we have, for any ϑ in E,
∥

∥P ′
ψ,κϑ‖2

ψ,κ= ‖(P ′
ψ,κϑ)Eψ,κ‖2

E

= ‖Uψ,κP ′
ψ,κϑ‖2

ESetting (see Fig. 4)
ϑ′ψ,κ := P ′

ψ,κϑ = ϑ− ϕo
ψ,κ (54)
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ϑr

ψ,κ := Uψ,κϑ
′
ψ,κ (55)we therefore have

∥

∥ϑ′ψ,κ‖2
ψ,κ = ‖ϑr

ψ,κ‖2
E (56)Note that

ϑr

ψ,κ = Rψ,κϑ (57)where
Rψ,κ := Uψ,κP ′

ψ,κ (58)As the matrix elements of Uψ,κ are homogeneous to the in-verse of a length (see Eq. (15)), ϑr

ψ,κ is without any phys-i
al dimension. A

ording to Eqs. (46), (54) and (56),the smallest value of ‖ϑ− ϕ‖ψ,κ, ϕ spanning F , is equalto ‖ϑ′ψ,κ‖ψ,κ = ‖ϑr

ψ,κ‖E . For example, for any spanningtree, we have ‖ϑ′ψ,κ‖ψ,κ < ‖ϑ[cd]‖ψ,κ; see Fig. 4; ϑr

ψ,κ 
antherefore be regarded as the `ψ-redu
ed form of ϑ.' Here,supers
ript r stands for redu
ed. This pointed out, it 
anbe shown that
‖ϑr

ψ,κ‖2
E = [ϑ′ψ,κ]

T[V ′
ψ,κ]

−1[ϑ′ψ,κ] (59)where [V ′
ψ,κ] is the varian
e-
ovarian
e matrix of Ψ′

ψ,κ.From Eqs. (49), (45), (56), (57) and (58), the redu
edfun
tional to be minimized is therefore of the form∗

Fr(u1, . . . , uκ, . . . , uk, v)

:=
k
∑

κ=1

∑

ν

ψ=(p;ν)
∑

ψ=(φ;ν)

∥

∥Ψ̃r

ψ,κ − (Ar

ψ,κuκ + B r

ψ,κv)
∥

∥

2

E

(60)where
Ar

ψ,κ := Rψ,κAψ,κ B r

ψ,κ := Rψ,κBψ,κ (61)and̃
Ψr

ψ,κ := Rψ,κΨ̃ψ,κ (62)The redu
ed equations to be solved in the usual LS senseare therefore the following:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ar

ψ,1u1 + B r

ψ,1v = Ψ̃r

ψ,1...
Ar

ψ,κuκ + B r

ψ,κv = Ψ̃r

ψ,κ...
Ar

ψ,kuk + B r

ψ,kv = Ψ̃r

ψ,k

(63)For ea
h κ, we thus have an equation for ψ = (φ; ν), andanother one for ψ = (p; ν), and this for all the frequen-
ies ν to be 
onsidered.
∗This fun
tional 
an equally well be obtained, dire
tly, by 
on-sidering the proje
tion of Eq. (43) onto F

′

ψ,κ
. Indeed, Eq. (60) thenderives from Eqs. (59) and (54).

In the dual-frequen
y 
ase, for example, these equations
an therefore be displayed in the blo
k form (1) in whi
h
Ak :=















Ar

φ;ν1,k

Ar

φ;ν2,k

Ar

p;ν1,k

Ar

p;ν2,k















Bk :=















B r

φ;ν1,k

B r

φ;ν2,k

B r

p;ν1,k

B r

p;ν2,k















(64)and
bk :=















Φ̃r

ν1,k

Φ̃r

ν2,k

P̃ r

ν1,k

P̃ r

ν2,k















(65)As 
lari�ed in Example 5.1 (Se
t. 5.4), the entries of thematri
es Ak, Bk and bk 
an easily be 
omputed.5.4 Referen
e spe
ial 
ase.To illustrate our analysis in a 
on
rete manner, we now
onsider the important spe
ial 
ase where the varian
e-
ovarian
e matrix of the observational data Ψψ,κ is diag-onal (see Liu 2002):
[Vψ,κ] = σ2

ψ diag(ηκ(i, j)) (on G) (66)Here, σ2
ψ is a `referen
e varian
e;' η(i, j) is a nonnegativeweight fun
tion. Note that Uψ,κ is then de�ned by therelation

[Uψ,κ] =
1

σψ
diag( 1

√

ηκ(i, j)

) (on G) (67)From Eq. (46), ϕo
ψ,κ then depends only on κ. For 
larity,let us then set

δ := ϕo
ψ,κ δr,i := δ[r](i) δs,j := δ[s](j) (68)and

ωκ(i, j) :=











1

ηκ(i, j)
on G

0 otherwise (69)From Properties 3 and 4 (see also Eq. (33)), we then have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ωκ(i, j)
{

ϑ(i, j) −
[

δr,i + δs,j
]}

= 0(for i = 1, . . .m)
∑

i∈Cj

ωκ(i, j)
{

ϑ(i, j) −
[

δr,i + δs,j
]}

= 0(for j = 2, . . . n)
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈Li

ωκ(i, j)
[

δr,i + δs,j
]

=
∑

j∈Li

ωκ(i, j)ϑ(i, j)(for i = 1, . . .m)
∑

i∈Cj

ωκ(i, j)
[

δr,i + δs,j
]

=
∑

i∈Cj

ωκ(i, j)ϑ(i, j)(for j = 2, . . . n)We are thus led to introdu
e the quantities
∣

∣

∣

∣

∣

∣

∣

∣

∣

Ωr,i :=
∑

j∈Li

ωκ(i, j) (for i = 1, . . .m)
Ωs,j :=

∑

i∈Cj

ωκ(i, j) (for j = 2, . . . n)and
∣

∣

∣

∣

∣

∣

∣

∣

∣

θr,i :=
∑

j∈Li

ωκ(i, j)ϑ(i, j) (for i = 1, . . .m)
θs,j :=

∑

i∈Cj

ωκ(i, j)ϑ(i, j) (for j = 2, . . . n)The equations to be solved to determine δ 
an then bewritten in the form
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ωr,i δr,i +

n
∑

j=2

Ωi,j δs,j = θr,i (for i = 1, . . .m)
m
∑

i=1

Ωi,j δr,i + ωs,j δs,j = θs,j (for j = 2, . . . n)i.e., in matrix terms,
∣

∣

∣

∣

∣

[Ωr] [δr] + [Ω][δs] = [θr]

[Ω]T[δr] + [Ωs][δs] = [θs]
(70)Note that [Ωr] is a m×m diagonal matrix, while [Ωs] is a

(n−1)×(n−1) diagonal matrix; their inverses are trivial.By 
onstru
tion, [Ω] has m lines and n − 1 
olumns. As
lari�ed below, Eq. (70) 
an be solved by 
omputing theinverse of a matrix with size (n− 1)× (n− 1) or m×m.We are thus led to 
onsider two 
ases.Case 1: n− 1 < mFrom the �rst equation (70), we have
[δr] = [Ωr]

−1
(

[θr] − [Ω][δs]
) (71)hen
e, from the se
ond,

[Ω]T[Ωr]
−1
(

[θr] − [Ω][δs]
)

+ [Ωs][δs] = [θs]i.e.,
[Ω̃s][δs] = [θs] − [Ω]T[Ωr]

−1[θr]where [Ω̃s] is the following (n− 1) × (n− 1) matrix:
[Ω̃s] := [Ωs] − [Ω]T[Ωr]

−1[Ω] (72)It then follows that
[δs] = [Ω̃s]

−1
(

[θs] − [Ω]T[Ωr]
−1[θr]

) (73)Equation (71) then yields [δr].

Case 2: n− 1 ≥ mFrom the se
ond equation (70), we have
[δs] = [Ωs]

−1
(

[θs] − [Ω]T[δr]
) (74)hen
e, from the �rst,

[Ωr][δr] + [Ω][Ωs]
−1
(

[θs] − [Ω]T[δr]
)

= [θr]i.e.,
[Ω̃r][δr] = [θr] − [Ω][Ωs]

−1[θs]where [Ω̃r] is the following m×m matrix:
[Ω̃r] := [Ωr] − [Ω][Ωs]

−1[Ω]T (75)It then follows that
[δr] = [Ω̃r]

−1
(

[θr] − [Ω][Ωs]
−1[θs]

) (76)Equation (74) then yields [δs].Example 5.1. In the spe
ial 
ase de�ned in Fig. 3, letus 
on
entrate on the 
olumn of Bk 
orresponding to theambiguity variable N [cd]
ν (2, 4). The entries of this 
olumnrelative to the redu
ed data Φ̃r

ν,k(i, j) on G are then the
orresponding values of λν(Rφ;ν,k c2,4
)

(i, j) where c2,4 isthe `
hara
teristi
 fun
tion' of edge (r2, s4):
c2,4 :=

0 ∗ 0 0

0 0 ∗ 1

∗ 0 0 0The other entries of that 
olumn are nought. Let us thende�ne the values of the weight fun
tion as follows (seeEq. (66)):
ηκ =

1.0 ∗ 0.8 1.0

0.5 0.4 ∗ 1.0

∗ 1.0 1.0 1.0Equations (73) and (71) then provide δ ≡ Pψ,k c2,4:
δr,1 = −0.22 δr,2 = 0.11 δr,3 = −0.21

δs,2 = −0.02 δs,3 = 0.22 δs,4 = 0.44The values of the ψ-redu
ed form of c2,4 for ψ = (φ; ν)are then the following (see Eqs. (58), (48), (47), (67)and (68)):
Rφ;ν,k c2,4 =

1

σφ;ν

0.22 ∗ 0.00 −0.22

−0.16 −0.15 ∗ 0.45

∗ 0.23 0.00 −0.23
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h adopted in this paper, the equation (1)or (2) relative to the problem under 
onsideration is solvedin the LS sense, and re
ursively, by using the QR method(Se
t. 7). The state transitions of the global variable, inparti
ular those due to a 
hange of the GNSS graph, areexamined in that framework; see Se
t. 7.4.The sele
ted QR implementation of this Re
ursive Least-Square (RLS) pro
ess is based on `Givens rotations' (e.g.,Björ
k 1996). The 
orresponding operations 
an thus bestored in memory very easily. The e�
ien
y of the quality-
ontrol pro
edures is thereby in
reased; see Se
t 9.At ea
h epo
h tk, the QR approa
h provides, in parti
u-lar, the �oat ambiguity v̂a and the Cholesky fa
tor Rk;a ofthe inverse of its varian
e-
ovarian
e matrix. This upper-triangular matrix is then de
orrelated via the LLL algo-rithm. As Rk;a may be of large size, a parti
ular imple-mentation of this algorithm is proposed; see Se
t. 8.2.On
e Rk;a has thus been de
orrelated, the integer am-biguity solution is obtained by using 
lassi
al integer-programming te
hniques (see, e.g., Agrell et al. 2002).The problem 
an thereby be 
ompletely solved.7 QR implementationAs already pointed out, we �rst restri
t ourselves to the
ase where the GNSS graph G does not 
hange in the
urrent run [t1, . . . , tκ, . . . , tk].The notion of QR fa
torization is introdu
ed in Se
t. 7.1.We then show how to solve Eq. (2) in a re
ursive manner(Se
t. 7.2). The 
orresponding variational aspe
ts arepresented in Se
t. 7.3. We then spe
ify how to handle theglobal variable when some transition o

urs (Se
t. 7.4).7.1 QR fa
torizationLet us 
onsider the following general LS problem: mini-mize, with the Eu
lidean norm,
‖Ax− y‖2

Rm (A ∈ R
m×n, m ≥ n, rank A = n)With regard to numeri
al a

ura
y, the best way to solvethis problem is to use a method based on the QR fa
tor-ization of A (see, e.g., Björ
k 1996):

A = Q

[

R
0

] (77)where R ∈ R
n×n is an upper triangular matrix with pos-itive diagonal terms, and Q ∈ R

m×m is an orthogonalmatrix: QTQ = Im (the identity matrix on R
m). We thus

A y

R z

z′

0

0

QTy

Figure 5: LS solution via QR fa
tor-ization. The a
tion of QT on A and yyields the basi
 QR stru
ture sket
hedhere: the upper-triangular matrix Rand the 
olumn matrix z. The solutionof the equation Ax = y in the LS senseis then given by Eq. (78): x̂ = R−1z.have
‖Ax− y‖2

Rm = ‖QT(Ax − y)‖2
Rm

=

∥

∥

∥

∥

QTQ

[

R
0

]

x− QTy

∥

∥

∥

∥

2

RmSetting QTy = z+ z′ where z ∈ R
n (see Fig. 5), it followsthat

‖Ax− y‖2
Rm = ‖Rx− z‖2

Rn + ‖z′‖2
Rm−nThe LS solution is therefore given by the relation

x̂ = R−1z (78)The problem 
an thereby be solved by ba
k substitution.In the 
ase where x is 
on�ned to Z
n, the solution of theproblem is therefore de�ned as follows:

ẋ = argmin
x∈Zn

‖R(x− x̂)‖2
Rn (79)Indeed, Rx− z = R(x− x̂).A

ording to Eq. (77), the QR fa
torization 
onsists in�nding an operator QT (and thereby an operator Q) su
hthat QTA has the blo
k stru
ture [R 0]T sket
hed inFig. 5. This operator is de�ned as a produ
t of elemen-tary orthogonal transformations. In the implementationpresented in this paper, the latter are Givens rotations(see Eqs. (2.3.10) to (2.3.13) in Björ
k 1996). Premul-tipli
ation of A and y by su
h a rotation matrix a�e
tsonly rows k and ℓ of A and d. This matrix is de�ned sothat, for (a2

k + a2
ℓ) 6= 0,

[

c s

−s c

] [

ak
aℓ

]

=

[

a

0

] (80)where
a = (a2

k + a2
ℓ)

1/2 (81)



Lannes and Gratton: GNSS networks in algebrai
 graph theory 63
K1 L1 c1

R1 , R2

K2 L2

L′
2

A1 B1

A2 B2

b1

b2

c′1

c2

c′2 d′2

d1

d′1

d2

Figure 6: LS solution via re
ursive QR fa
toriza-tion. The prin
iple of the re
ursive QR method issket
hed here for the �rst two epo
hs: epo
h 1 withthe input blo
k matri
es A1 , B1 and the data 
ol-umn matrix b1; epo
h 2 with the input blo
k ma-tri
es A2 , B2 and the data 
olumn matrix b2. Theinitialization pro
ess is performed in two steps: K1 ,
(L1 , L

′

1), (c1 , c
′

1) are built in the �rst step (see textfor L′

1), whereas R1 , (d1 , d
′

1) are built in the se
ond.The global �oat solution is then found by ba
k substi-tution: v̂ = R−1
1 d1. The lo
al solution is then givenby the formula û1 = K−1

1 (c1 − L1v̂). Likewise, at thenext epo
h, one �rst builds K2 , (L2 , L
′

2), (c2 , c
′

2),and then R2, (d2 , d
′

2); v̂ is then updated via the re-lation v̂ = R−1
2 d2. The lo
al solution at epo
h 2 
anthen be 
omputed: û2 = K−1

2 (c2 − L2v̂).It is easy to 
he
k that the 
osine and sinus values 
 and sare then given by the following formulas
c = ak/a s = aℓ/a (82)Note that m−1 Givens rotations are required for the �rst
olumn of A, m−2 for the se
ond, and so on (see Fig. 5).It is important to point out that that the a
tion of QT
an be stored in memory as the sequen
e of the su

es-sive (
osine, sinus) pairs (c, s) 
hara
terizing the su

es-sive Givens rotations involved in this operation.7.2 Re
ursive QR fa
torizationWe now show how to solve, in the LS sense and re
ur-sively, the equation (2) indu
ed by the redu
ed equations.Let us �rst 
onsider the initialization epo
h: epo
h 1.The problem is then solved in two steps (see Fig. 6).

Kk Lk ck

Rk dk

Figure 7: Re
ursive QR trian-gular stru
ture. A

ording tothe prin
iple of the re
ursive QRmethod sket
hed in Fig. 6, the 
al-
ulation of Rk+1 and dk+1 requiresto have kept in memory the uppertriangular matrix Rk and the 
ol-umn matrix dk (see text).The Givens rotations of the �rst step are those requiredfor �nding the upper triangular matrix K1. The modi�edversion of B1 thus obtained in
ludes an upper blo
k L1and a lower blo
k L′
1. Likewise, the modi�ed version of b1in
ludes two 
olumn submatri
es: c1 and c′1.The Givens rotations of the se
ond step yield the uppertriangular matrix R1; c′1 then yields (d1 , d

′
1); see Fig. 6.Note that K1, L1 and c1 are not a�e
ted by these ro-tations. The global solution is then obtained by ba
ksubstitution via the formula v̂ = R−1

1 d1. The lo
al so-lution 
an then be also 
omputed by ba
k substitution:
û1 = K−1

1 (c1 − L1v̂).The �rst step of the next epo
h (epo
h 2) is similar tothat of epo
h 1: one thus obtains the upper triangularmatrix K2. The modi�ed version of B2 then in
ludes anupper blo
k L2 and a lower blo
k L′
2. Likewise, the mod-i�ed version of b2 in
ludes two 
olumn submatri
es: c2and c′2 (see Fig. 6). The Givens rotations of the se
ondstep then operate on (R1 , L

′
2) and (d1 , c

′
2) so as to trans-form L′

2 into a zero blo
k matrix. One thus gets R2 and
(d2 , d

′
2); v̂ is then updated via the relation v̂ = R−1

2 d2.The lo
al solution at epo
h 2 
an then be 
omputed:
û2 = K−1

2 (c2 − L2v̂).In summary, one thus operates, re
ursively, with the keystru
ture shown in Fig. 7: Kk+1, (Lk+1 , L
′
k+1) and

(ck+1 , c
′
k+1) are 
omputed fromAk+1, Bk+1 and bk+1, thequantities Rk+1 and (dk+1 , d

′
k+1) being then 
omputedfrom (Rk , L

′
k+1) and (dk , c

′
k+1). We then have

[

Kk+1 Lk+1

· Rk+1

] [

ûk+1

v̂

]

=

[

ck+1

dk+1

] (83)hen
e
v̂ = R−1

k+1dk+1and
ûk+1 = K−1

k+1(ck+1 − Lk+1v̂)
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al
ulationWe now answer to the following question: what are thevariations ∆ûk and ∆v̂ indu
ed by a variation ∆bk of bk(at epo
h tk)? From Eq. (2), these variations are the
u-v 
omponents at epo
h tk of the LS solution of theequation










A1 B1

A2 B2

· · ·
...

Ak Bk





















∆u1

∆u2...
∆uk











=











0
0...

∆bk











[

∆v
]By 
onstru
tion, the quantities ∆d1, . . . , ∆dk−1 indu
edby this equation are nought. The problem is thereforethe same as previously, ∆dk being then 
omputed from

∆c′k with ∆dk−1 = 0. This is why it is re
ommended tostore in memory the sequen
e of the su

essive pairs (c, s)
hara
terizing the Givens operators involved in the twoQR steps of epo
h tk (see Fig. 6 and Eqs. (81) & (82)).7.4 State transitions of the globalvariableAt some epo
hs tk, one may be led to perform a linearoperation on the global variable v:
v̂′ = Sv̂For example, this o

urs in the following 
ases:1) The 
omponents of v̂ are to be modi�ed in a re-versible manner; S is invertible: S ≡ S1 (Se
t. 7.4.1).Note that reordering the 
omponents of v̂ 
omes un-der this 
ase.2) Some 
omponents of v̂ are to be dis
arded; S is thenof the form S2S1 where (Se
t. 7.4.2)� S1 is a `reordering operator;'� S2 is a `trun
ation operator.'Su
h an operator is not invertible.3) Some edges of the 
urrent spanning tree of Gk (theGNSS graph at epo
h tk) are missing in Gk+1. Asspe
i�ed in Se
t. 7.4.3, S is then of the form S2S1where� S1 is an operator whi
h 
hanges the set ofthe 
urrent CD ambiguities into another setof su
h ambiguities;� S2 is a trun
ation operator.At epo
h tk+1, new entries of v may appear. For ex-ample, this is the 
ase when new edges appear in theGNSS graph. How to pro
eed in this 
ase is spe
i�ed inSe
t. 7.4.4.

7.4.1 Reversible operationsWe then have Rkv̂ = RkS
−1
1 v̂′ = dk, hen
e

R′
kv̂

′ = dk where R′
k := RkS

−1
1This matrix is no longer triangular. One then performsGivens rotations on R′

k and dk so that R′
k be
omes uppertriangular: R′

k→R′′
k , dk → d′′k. One then �nally sets

Rk
set

=R′′
k dk

set

= d′′k7.4.2 Trun
ationsFor example, 
onsider the 
ase where the 
omponents v̂(3)and v̂(5) of v̂ are to be dis
arded. One �rst performs thepermutation
S1

























v̂(1)

v̂(2)

v̂(3)

v̂(4)

v̂(5)

v̂(6)...
























=

























v̂(3)

v̂(5)

v̂(1)

v̂(2)

v̂(4)

v̂(6)...






















The 
olumns of Rk are then permuted a

ordingly. As thematrix thus obtained, R′
k, is no longer upper triangular,one then performs Givens rotations on R′

k and dk so that
R′
k be
omes upper triangular: R′

k→R′′
k , dk → d′′k . To
omplete the pro
ess, one then removes the �rst two linesand �rst two 
olumns of R′′

k , as well as the �rst two entriesof v̂′ and d′′k . Again, one then �nally sets Rk set

=R′′
k and

dk
set

= d′′k.7.4.3 Graph transitionsLet us denote by
Gk := (Vk, Ek) Gk+1 := (Vk+1, Ek+1)the GNSS graphs at epo
hs tk and tk+1, respe
tively.As illustrated in the upper and lower parts of Fig. 8,
Gk and Gk+1 denote their respe
tive grids. Let us nowset
F := Ek ∩ Ek+1The edges of Ek that do not lie in F form a set denotedby M:
M := Ek −FLikewise, the edges of Ek+1 that do not lie in F form aset denoted by N :
N := Ek+1 −F



Lannes and Gratton: GNSS networks in algebrai
 graph theory 65Here, M andN stand for `missing edges' and `new edges,'respe
tively. In this se
tion, we 
onsider the 
ase where
M is not empty.The entries of v̂a at epo
h tk are de�ned with respe
t tothe 
urrent spanning tree of Gk: Gk;st (see Fig. 8). Oneis then led to introdu
e another spanning tree of Gk: the`transition spanning tree' Gk;tst. This spanning tree isobtained by 
onsidering the following `ordered partition'of Ek (see Remark 4.2 and Fig. 8):
Ek = F ∪M (F ∩M = ∅)The spanning tree of Gk+1, Gk+1;st , is then built from thefollowing `ordered partition' of Ek+1 (see Fig. 8):
Ek+1 = F ∪N (F ∩N = ∅)The analysis of the 
ase where N is not empty is 
om-pleted under the analysis developed in Se
t. 7.4.4.With regard to M, two 
ases are then to be 
onsidered:(i) the 
ase where M∩Gk;st = ∅;(ii) the 
ase where M∩Gk;st 6= ∅.In the usual 
ase (i), the elements of M are loop-
losureedges. The 
omponents of v̂a 
orresponding to theseedges are then simply to be removed. The pro
edure de-s
ribed in Se
t. 7.4.2 
an then be implemented dire
tly.In the spe
ial 
ase (ii), this is not so simple. One must�rst introdu
e some transition state v̂a;1. As spe
i�ed inthe example presented further on (see Fig. 8), the entriesof v̂a;1 are de�ned with respe
t to the transition spanningtree Gk;tst. More pre
isely, this state is de�ned by the rela-tion v̂a;1 = S1v̂a where S1 is an invertible operator de�nedvia the re
ursive di�erential pro
ess de�ned in Se
t. 4.2;
Rk is then updated a

ordingly (see Se
t. 7.4.1). Thistransition operation is 
ompleted by a trun
ation oper-ation in whi
h the 
omponents of v̂a;1 
orresponding tothe edges of M are removed (see the pro
edure des
ribedin Se
t. 7.4.2).On
e all these algebrai
 operations have been performed,the quantities Rk and dk, whi
h have thus been updated,are used to perform the re
ursive QR step towards Rk+1and dk+1 (see Se
t. 7.4.4).Example 7.1. To illustrate these 
onsiderations in a
on
rete manner, let us assume that the GNSS graph atepo
h tk is that shown in Fig. 3; its grid Gk is shown isthe upper part of Fig. 8. The 
urrent spanning tree Gk;stis that represented in the same �gure.As shown in the lower grid of Fig. 8, let us now assumethat at epo
h tk+1, satellite s1 is no longer visible, andthat satellite s3 is no longer visible from re
eiver 1. A newsatellite, s5, is then visible from re
eivers r1 and r2. More-over, satellite s2 is then visible from re
eiver 1, and satel-

s s s

s s s

s s s

r1

r2

r3

s1 s2 s3 s4

s s s

s s s

s s s

r1

r2

r3

s1 s2 s3 s4

s s s

s s s s

s s s

r1

r2

r3

s1 s2 s3 s4 s5

Figure 8: Graph transition. In the example shown here, theupper grid Gk is that of the GNSS graph at epo
h tk. Thelower gridGk+1 is that of the GNSS graph at epo
h tk+1. Thegrid in between is a 
opy of Gk for des
ribing the transition tobe performed. As illustrated here, the edges (r1, s1), (r1, s3)and (r2, s1) disappear at epo
h tk+1, while four new edgesthen appear: (r1, s2), (r1, s5), (r2, s3) and (r2, s5). The bla
kdots of the upper grid form the subgrid Gk;st of the 
urrentspanning tree at that epo
h. Likewise, the bla
k dots of these
ond grid form the subgrid Gk;tst of the transition spanningtree (see text). The red dots of ea
h of these grids de�nethe sets of loop-
losure edges involved in the transition tobe performed. The relation between the �rst ambiguity setand the se
ond is linear and invertible. The 
orrespondingoperations 
an be performed by referring to the re
ursivepro
ess de�ned in Se
t. 4.2. The bla
k dots of the lowergrid de�ne the subgrid Gk+1;st of the spanning tree sele
tedfor Gk+1 (for further details see text).lite s3 is then visible from re
eiver 2. We then have
F = {(r1, s4), (r2, s2), (r2, s4), (r3, s2), (r3, s3), (r3, s4)}
M= {(r1, s1), (r1, s3), (r2, s1)}
N = {(r1, s2), (r1, s5), (r2, s3), (r2, s5)}The grid points of Gk;st, Gk;tst and Gk+1;st are shownin Fig. 8 as bla
k dots. The red dots 
orrespond to theloop-
losure edges de�ned via the 
hoi
e of these spanningtrees. The edges of Gk;tst and Gk+1;st are respe
tivelyobtained in the following orders:
(r1, s4), (r2, s2), (r2, s4), (r3, s2), (r3, s3); (r1, s1)

(r1, s4), (r2, s2), (r2, s4), (r3, s2), (r3, s3); (r1, s5)The entries of v̂a at epo
h tk are then the �oat CD am-biguities (see the upper grid of Fig. 8)
N̂ [cd]
ν (2, 4), N̂ [cd]

ν (3, 3), N̂ [cd]
ν (3, 4)The entries of v̂a;1 at epo
h tk are then the �oat CD am-biguities (see the se
ond grid of Fig. 8)

N̂
[cd]
ν;1 (1, 3), N̂

[cd]
ν;1 (2, 1), N̂

[cd]
ν;1 (3, 4)
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 graph theory 66To de�ne this state transition, i.e., to de�ne, expli
itly,the operator S1 involved in the relation v̂a;1 = S1v̂a, weare then led to 
onsider the fun
tion ϑ set

= N̂
[cd]
ν . Note thatwe then have

ϑ(1, 1) = 0; ϑ(1, 3) = 0; ϑ(1, 4) = 0;

ϑ(2, 1) = 0; ϑ(2, 2) = 0; ϑ(2, 4) = N̂
[cd]
ν (2, 4);

ϑ(3, 2) = 0; ϑ(3, 3) = N̂
[cd]
ν (3, 3); ϑ(3, 4) = N̂

[cd]
ν (3, 4)Condu
ted on grid Gk;tst with ϑ[s](2) = 0, and appliedto this fun
tion, the re
ursive di�erential pro
ess de�nedSe
t. 4.2 then yields, su

essively,

ϑ[r](2) = ϑ(2, 2) − ϑ[s](2) = 0

ϑ[s](4) = ϑ(2, 4) − ϑ[r](2) = N̂
[cd]
ν (2, 4)

ϑ[r](3) = ϑ(3, 2) − ϑ[s](2) = 0

ϑ[s](3) = ϑ(3, 3) − ϑ[r](3) = N̂
[cd]
ν (3, 3)

ϑ[r](1) = ϑ(1, 4) − ϑ[s](4) = −N̂ [cd]
ν (2, 4)

ϑ[s](1) = ϑ(1, 1) − ϑ[r](1) = N̂
[cd]
ν (2, 4)hen
e, from Eq. (37),

N̂
[cd]
ν;1 (1, 3) = ϑ(1, 3) − [ϑ[r](1) + ϑ[s](3)]

= N̂
[cd]
ν (2, 4) − N̂

[cd]
ν (3, 3)

N̂
[cd]
ν;1 (2, 1) = ϑ(2, 1) − [ϑ[r](2) + ϑ[s](1)]

= −N̂ [cd]
ν (2, 4)

N̂
[cd]
ν;1 (3, 4) = ϑ(3, 4) − [ϑ[r](3) + ϑ[s](4)]

= N̂
[cd]
ν (3, 4) − N̂

[cd]
ν (2, 4)The operator S1 involved in this reversible transition isthus expli
itly de�ned; see Se
t. 7.4.1. Note that its ma-trix and its inverse 
an be obtained via elementary al-gebrai
 
omputations. The ambiguities N̂ [cd]

ν;1 (1, 3) and
N̂

[cd]
ν;1 (2, 1) are then dis
arded; see Se
t. 7.4.2.7.4.4 Handling additional 
omponentsFrom time to time, some new entries of v are to be in-trodu
ed. For example, in the graph transition of Fig. 8,the following entries of va must be taken into a

ount:
N [cd]
ν (1, 2), N [cd]

ν (2, 3), N [cd]
ν (2, 5)The �rst 
olumns of Bk+1 are then pro
essed as the last
olumns of Ak+1 (see Fig. 6). To get Rk+1 and dk+1, onethen pro
eeds as illustrated in Fig. 9.This pointed out, when su
h a transition o

urs, one maybe led to reorder the 
omponents of v; see for instan
eEq. (42). One then pro
eeds as spe
i�ed in Se
t. 7.4.1.

K L c

d

R

dk+1Rk+1

Figure 9: Handling additional entries ofthe global variable. When new entries of vappear at epo
h tk+1, the �rst 
olumnsof Bk+1 are pro
essed as the last 
olumnsof Ak+1 (see Fig. 6). The re
ursive QR op-eration then yields the quantities K, L, c,
R and d. To get Rk+1 and dk+1, one thenpro
eeds as illustrated here.8 Integer-ambiguity resolutionAt ea
h epo
h, the QR approa
h provides, in parti
ular,the �oat solution v̂ and the Cholesky fa
tor Rk of theinverse of its varian
e-
ovarian
e matrix. We then have

Rkv̂ = dk (see Se
t. 7.2), i.e., from Eq. (42),
[

Rk;b Rk;ba

0 Rk;a

][

v̂b

v̂a

]

=

[

dk;b

dk;a

] (84)The ambiguity solution is then de�ned by the relation(see Eq. (79))
v̇a = argmin

va∈Zna

‖Rk;a(va − v̂a)‖2
Rna (85)where na is the number of entries of v̂a. When in thedata assimilation pro
ess, v̇a be
omes 
onsistent with themodel (up to the noise), the ambiguities are said to be�xed. The estimate of the �oat 
omponent of the globalvariable is then re�ned a

ordingly (see Eq. (84)):

v̇b = R−1
k;b(dk;b −Rk;bav̇a) (86)The lo
al variable ûk is then re�ned via a FLS (FixedLeast-Squares) pro
ess, i.e., a pro
ess in whi
h the ambi-guities are �xed. Again, the QR method is well suited tosolving this problem.The remainder of this se
tion is devoted to the sear
h ofthe integer ambiguity solution. For 
larity, subs
ripts `k'and `a' are then omitted. Equation (85), for instan
e, isthen simply read as follows:

v̇ = argmin
v∈Zn

‖R(v − v̂)‖2
Rn (87)This nearest-latti
e-point problem is solved in two steps(see, e.g., Agrell et al. 2002). One �rst sear
hes a `re-du
ed basis' of Z

n in whi
h the matrix of RTR is as diag-onal as possible. The problem is then solved in this basis
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 graph theory 67by using the 
orresponding `redu
ed form' of R: R̄; theinteger-valued solution ˙̄v thus obtained is then expressedin the original basis: ˙̄v 7→ v̇.The �rst step 
orresponds to a de
orrelation pro
ess. Thede
orrelation methods to be implemented must somehowrefer to the prin
iples of the LLL algorithm (an algorithmdevised by Lenstra, Lenstra and Lovàsz in 1982). In the
ase of GNSS networks, as R may be of large size, parti
-ular implementations of this algorithm are to be devised.For the parti
ular methods presented in this se
tion, theentries of v are lumped together in m re
eiver blo
ks vi:
v =



















v1...
vi...
vm



















(m ≤ m) (88)The re
eiver blo
ks are of the form
vi :=









[

N [cd]
]

i,ν1
[

N [cd]
]

i,ν2
[

N [cd]
]

i,ν3









(89)For example, at epo
h tk of Fig. 8, we have
[

N [cd]
]

i,ν
:=
[

· · · N [cd]
ν (i+ 1, j) · · ·

]T (90)where j spans the subset of Li+1 de�ned by the loop-
losure points of line i+ 1; see Eq. (51). We then have
m = m− 1 = 2.The number of entries of vi is denoted by ni. For example,with three 
arrier waves on a full network (see Fig. 2), wehave ni = 3(n−1) for i = 1, . . . ,m with m = m−1. Notethat
n =

m
∑

i=1

ni (91)The stru
ture of R indu
ed by that of v in
ludes m ver-ti
al bands of the form
B1 :=











T1

0... 









Bi :=











Si
Ti

0...  (for i > 1) (92)Here, Ti is an upper-triangular matrix with ni positivediagonal elements; Si is a re
tangular matrix with pi linesand ni 
olumns:
pi =

i−1
∑

ι=1

nι (i > 1) (93)

As spe
i�ed in Se
t. 8.1, the sear
h for a redu
ed basis
an be initialized via some inter-frequen
y de
orrelationpro
ess. For ea
h loop-
losure point (i, j) of Li, the vari-ables N [cd]
ν1 (i, j), N [cd]

ν2 (i, j), N [cd]
ν3 (i, j) 
an thus be de
or-related. It is important to note that this pro
ess performsan operation basi
ally similar to that of the widelane andextra-widelane te
hniques (see e.g., Feng and Li 2008,Teunissen 1997). This pointed out, by pro
eeding in thisway for ea
h Ti, one bene�ts from the 
orrelation infor-mation 
on
erning these variables at the 
urrent epo
h.It is however preferable to perform, dire
tly, what we
all `LLL band de
orrelation' (Se
t. 8.2). This pointedout, on
e this weakened implementation of the LLL al-gorithm has been performed, the size of the sear
h el-lipsoid must generally be redu
ed. This is done via the`blo
kwise-bootstrapping' method des
ribed in Se
t. 8.3.The integer-ambiguity solution 
an then be obtained andvalidated via standard integer-programming te
hniques(Agrell et al. 2002).8.1 Inter-frequen
y de
orrelationWith regard to the frequen
y-blo
k stru
ture of vi (seeEqs. (89) and (90)), the matrix elements of Ti relativeto the same loop-
losure point are then distributed asfollows:

tν1,ν1 · · · tν1,ν2 · · · tν1,ν3

· · ·
... ...

tν2,ν2 · · · tν2,ν3

· · ·
...

tν3,ν3

(94)By performing appropriate operations on R (see, e.g., Lukand Tra
y 2008), the following 
onditions 
an easily beimposed:
t̄ν1,ν1 > 2|̄tν1,ν2 | t̄ν1,ν1 > 2|̄tν1,ν3 |

t̄ν2,ν2 > 2|̄tν2,ν3 |
(95)Note that in this pro
ess, the diagonal elements are notmodi�ed: t̄ν,ν = tν,ν . For ea
h re
eiver blo
k (of index i),these operations are performed for ea
h set of the threeentries to be 
onsidered. The upper-triangular matrix R̄thus obtained is equal to RZ where Z is a unimodularmatrix. (By de�nition, a unimodular matrix is an integermatrix whose inverse is also an integer matrix.) We thenhave Rv = R̄v̄ where v̄ = Z−1v. The entries of v̄ arethe 
omponents of the integer-ambiguity ve
tor in the re-du
ed basis thus de�ned. This pro
ess also provides Z−1.8.2 LLL band de
orrelationThe guiding idea of the de
orrelation pro
ess presentedin this se
tion is to perform 
omplete LLL de
orrela-tions of the su

essive triangular blo
ks T1, T2, . . . ., Tm.
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 graph theory 68The matrix elements of the blo
ks T̄i and S̄i of the de
or-related bands B̄i thus obtained are respe
tively denotedby t̄ k,ℓi and s̄ q,ℓi (see Eq. (92)). The diagonal elementsof R̄ are then denoted by r̄ q,q. For i > 1, we thus have
t̄ k,ki = r̄ pi+k, pi+k for 1 ≤ k ≤ ni.The band de
orrelation in question is a simple extensionof the `new implementation' of the LLL algorithm pro-posed by Luk and Tra
y (2008). For 
larity, we set
µki :=

∣

∣

∣

∣

∣

t̄ k,k+1
i

t̄ k,ki

∣

∣

∣

∣

∣

2

(1 ≤ k < ni) (96)The following 
onditions, with 1/4 < ̟ < 1, 
an then beimposed:For band i = 1, . . . ,m{If i > 1, thenfor q = pi, pi − 1, . . . , 1 r̄ q,q > 2
∣

∣s̄ q,1i

∣

∣For 
olumn ℓ = 2, . . . , ni of B̄i{
µℓ−1
i < 1/4;
[

t̄ ℓ,ℓi
]2 ≥

(

̟ − µℓ−1
i

)[

t̄ ℓ−1,ℓ−1
i

]2If ℓ > 2, thenfor k = ℓ− 2, ℓ− 3, . . . , 1 t̄ k,ki > 2
∣

∣t̄ k,ℓi

∣

∣For q = pi, pi − 1, . . . , 1 r̄ q,q > 2
∣

∣s̄ q,ℓi
∣

∣}}In fa
t, for optimal de
orrelation, ̟ is set equal to 0.999.This pro
edure provides R̄ as the produ
t QRZ, in whi
h
Q is an orthogonal matrix, and Z is a unimodular matrix.We then have
‖Rv‖2

Rn = ‖R̄v̄‖2
Rn (97)where

v̄ := Z−1v (98)The entries of v̄ are the 
omponents of the ambiguity ve
-tor in the redu
ed basis thus de�ned; Z−1 is progressivelybuilt through the pro
ess (together with Z). It followsthat
‖R(v − v̂)‖2

Rn = ‖R̄(v̄ − ¯̂v)‖2
Rn (99)where

¯̂v := Z−1v̂ (100)In the absen
e of any prior information, the sear
h ellip-soid (the ellipsoid in whi
h the solution is to be sear
hed)is then de�ned by the relation
E0 :=

{

v̄ : ‖R̄(v̄ − ¯̂v)‖2
Rn ≤ ǫ0

} (101)

where
ǫ0 := ‖R̄(v̄(0) − ¯̂v)‖2

Rn with v̄(0) :=
⌈

¯̂v
⌋ (102)Here, ⌈ ¯̂v

⌋ denotes the 
olumn matrix whose entries arethe nearest integers to the 
orresponding entries of ¯̂v. Be-fore solving the nearest-latti
e point problem in the re-du
ed basis, one may be led to redu
e the size of thesear
h ellipsoid. The blo
kwise-bootstrapping te
hniquedes
ribed below 
an then be implemented.8.3 Blo
kwise bootstrappingThe pro
edure presented in this se
tion provides a �nitesequen
e of integer-ambiguity ve
tors v̄(q) su
h that
ǫq+1 < ǫq where ǫq := ‖R̄(v̄(q) − ¯̂v)‖2

Rn (103)The ellipsoids
Eq :=

{

v̄ : ‖R̄(v̄ − ¯̂v)‖2
Rn ≤ ǫq

} (104)therefore satisfy the property Eqf ⊂ · · · ⊂ E1 ⊂ E0 where
qf is some �nite integer.To de�ne this pro
edure, let us 
onsider the quadrati
fun
tional (see Eqs. (99), (92) and (88))
ǫ(v̄1, . . . , v̄i, . . . , v̄m) := ‖R̄(v̄ − ¯̂v)‖2

Rn

=
∥

∥

∑m

i=1 B̄i(v̄i − ¯̂vi)
∥

∥

2

Rn

(105)From Eq. (102), we have ǫ(v̄(0)
1 , . . . , v̄

(0)
i , . . . , v̄

(0)
m

)

= ǫ0.The prin
iple of this pro
edure is then the following. Forexample, we �rstminimize ǫ(v̄(0)
1 , . . . , v̄

(0)
m−1, v̄m

) in v̄
m

(106)The minimum is attained for some v̄(1)
m ∈ Z

nm . (How todo that is spe
i�ed at the end of this se
tion.) We thenminimize ǫ(v̄(0)
1 , . . . , v̄

(0)
m−2, v̄m−1, v̄

(1)
m

) in v̄
m−1 (107)The minimum is attained for some v̄(1)

m−1 in Z
nm−1 . Wepro
eed like that until the �rst blo
k variable in
luded.We have thus found an `integer-ambiguity point'

v̄(1) :=
(

v̄
(1)
1 , . . . , v̄

(1)
i , . . . , v̄

(1)
m

)for whi
h ǫ = ǫ1 with ǫ1 ≤ ǫ0. If ǫ1 = ǫ0, the pro
ess isinterrupted. Otherwise, we thenminimize ǫ(v̄(1)
1 , . . . , v̄

(1)
m−1, v̄m

) in v̄m (108)and so on until the pro
ess is interrupted.We now spe
ify how to perform the internal minimiza-tions of type (106), (107) and (108). For example, with
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 graph theory 69regard to problem (106), we have, from Eq. (105),
ǫ(v̄

(0)
1 , . . . , v̄

(0)
m−1, v̄m)

=
∥

∥

∥
B̄m(v̄m − ¯̂vm) +

m−1
∑

i=1

B̄i
(

v̄
(0)
i − ¯̂vi

)

∥

∥

∥

2

Rn

=
∥

∥

∥B̄mv̄m −
[

B̄m
¯̂vm −

m−1
∑

i=1

B̄i
(

v̄
(0)
i − ¯̂vi

)

]∥

∥

∥

2

RnThe problem of minimizing this quantity in v̄m is solvedin two steps: we �rst �nd its �oat solution by QR fa
-torization; see Se
t. 7.1. In the 
urrent redu
ed basis, wethen solve the remaining problem of type (79); see Agrellet al. (2002). Note that for ea
h i, the a
tion of the oper-ator QT
i involved in the �rst 
orresponding QR operationis to be stored in memory (see Se
t. 7.1).9 DIA methodsTo prevent that biases on the undi�erential data prop-agate undete
ted into the ambiguity solution, parti
u-lar methods have been developed. The biases are �rst`Dete
ted,' then `Identi�ed,' and �nally the results are`Adapted' 
onsequently (e.g., Teunissen 1990, Hewitsonet al. 2004, Lannes and Gratton 2008). The identi�
a-tion prin
iple of the DIA method presented in this se
tionis `lo
al:' the biases are identi�ed epo
h by epo
h. The
orresponding analysis is based on the results provided bythe QR pro
ess at the 
urrent epo
h. When the ambigu-ities are not �xed, the adaptation prin
iple is global: thelo
al variables, the 
urrent biases, the 
urrent �oat ambi-guities and the 
urrent QR triangular stru
ture (sket
hedin Fig. 7) are updated in the global frame of the RLS pro-
ess, without any approximation.9.1 Quality 
ontrolLet us set (see Eqs. (45) and (46))

θ̂ψ,κ := Ψ̃ψ,κ − (Aψ,κûκ + Bψ,κv̂)and̂
ϕo
ψ,κ := argmin

ϕ∈F
‖θ̂ψ,κ − ϕ‖2

ψ,κWhen the model de�ned by Eqs (43) and (66) holds, onea
h point of G, |θ̂ψ,κ − ϕ̂o
ψ,κ| is then less than a few

σψ
√
η, say less than χ0σψ

√
η where χ0 is of the order of 3for example; for further details on the 
hoi
e of χ0, seeSe
t. 9.5. But, from Eqs. (48) and (47),

θ̂ψ,κ − ϕ̂o
ψ,κ = P ′

ψ,kθ̂ψ,κAs a result (see Eq. (58)), the absolute value of
Rψ,kθ̂ψ,κ ≡ Uψ,kP ′

ψ,kθ̂ψ,κ

is then less than χ0 on G; see Eq. (67). Taking a

ountof Eqs. (61) and (62), we are thus led to 
on
entrate onthe quantity
wψ,k := Rψ,kϑ̂ψ,κ = Ψ̃r

ψ,κ − (Ar

ψ,κûκ + B r

ψ,κv̂) (109)If for ψ = (φ; ν), (p; ν) and for ea
h ν, |wψ,k| is less than χ0all over G, we therefore 
onsider that the model 
an bea

epted as it is. Note that by 
onstru
tion, wψ,k is the
ψ-
omponent of the lo
al residual
wk := bk − (Akûk +Bkv̂)

= Hkbk
(110)where Hk is a linear operator (see Se
t. 7).For 
larity, we now omit the time subs
ript k. In this
ontext, to 
ontrol the validity of the model, we 
onsiderthe quantity

|w|max := max
ν

ψ=(p;ν)
max

ψ=(φ;ν)
max

(i,j)∈G
|wψ(i, j)| (111)If |w|max is larger than χ0, the model is to be re�ned. Forsome ψ's and some (i, j)'s to be identi�ed, we then sear
hto estimate additive biases βψ(i, j). More pre
isely, thealgebrai
 de�nition of these biases is su
h that the orginaldata Ψψ(i, j) should then be 
orre
ted as follows:

Ψψ(i, j)
set

= Ψψ(i, j) − βψ(i, j) (112)A

ording to Eqs. (49) and (45), Fr and thereby wψ areinvariant under any variation of Ψψ in the vertex-delayspa
e F ; see Fig. 4. As a result, to handle the identi�-
ation problem in question, a preliminary notion is to beintrodu
ed: the notion of `identi�able bias.'9.2 Identi�able biasesA unity bias on some re
eiver-satellite signal ψ(i, j) isde�ned by the 
hara
teristi
 fun
tion ci,j of edge (ri, sj):
ci,j(i

′, j′) :=

{

1 if (i′, j′) = (i, j)

0 otherwise (113)Let us now 
onsider two `signed unity biases' on ψ havingthe same 
losure delays. As these biases are equal up toa ve
tor of F , their redu
ed forms are identi
al. As a re-sult, they 
annot be distinguished. The following analysis
lari�es this point expli
itly.The values of c[cd]
i,j on the loop-
losure points of G forma ve
tor c

[cd]
i,j in
luding nc 
omponents. As the 
losuredelays are algebrai
 sums of SD's (see Remark 4.4), these
omponents are equal to ±1 or zero. The simplest wayto determine them is to use the re
ursive di�erential pro-
ess de�ned in Se
t. 4.2. For our present purposes, wesay that the one-dimensional subspa
e generated by c

[cd]
i,j
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 graph theory 70de�nes a `bias dire
tion' d in E[cd]. As two distin
t edgesmay de�ne the same bias dire
tion, the number of identi-�able biases is less than or equal to the number of edges:
nd ≤ ne. For example, in the 
ase of the graph de�nedin Fig. 3, nd is equal to 6; the ve
tors dℓ are then thefollowing:

d1 d2 d3 d4 d5 d6

1 0 0 1 −1 0
0 1 0 1 0 1
0 0 1 1 −1 1They are obtained in this order by spanning, �rst the

nc loop-
losure points of G, and then the points of Gst.By 
onstru
tion, we thus have (see Eq. (32))
nc ≤ nd ≤ ne (114)Denoting by Gℓ the set of points of G whose bias dire
-tion is equal to dℓ, we then say that ⋃nd

ℓ=1Gℓ is the `biaspartition' of G. For example, in the spe
ial 
ase of Fig. 3,we have
G1 = {(2, 4)} G2 = {(3, 3); (1, 3)} G3 = {(3, 4)}
G4 = {(1, 1); (2, 1)} G5 = {(1, 4)} G6 = {(2, 2); (3, 2)}The �rst element of Gℓ is denoted by eℓ. Here for ex-ample, e2 = (3, 3); e stands for edge. Whenever Gℓ in-
ludes two grid points, the latter are of the form (i, j)and (i′, j). Furthermore, we then have c

[cd]
i,j = dℓ and

c
[cd]
i′,j = −dℓ. An identi�able bias is thus asso
iated eitherwith a re
eiver-satellite signal, or with a single di�eren
e.When m = 2, ea
h bias is asso
iated with a single di�er-en
e. The number of identi�able biases is then equal to n:
nd = n; see Lannes and Gratton (2008). Conversely, inthe 
ase where the GNSS graphs are full or almost fullwith m > 2, nd proves to be equal to ne.9.3 Identi�
ation prin
ipleWhen the model is to be re�ned, we sear
h to identify ad-ditive biases of the form βℓψ (see Se
t. 9.1); here, ℓψ 
har-a
terizes the 
orresponding `outlier:' an outlier with di-re
tion dℓ on the data ve
tor ψ. The outliers ℓψ form aset to be identi�ed: the `outlier set' O.A

ording to Eqs. (110), (65) and (62), the variation of windu
ed by the unity bias ceℓ on ψ is 
hara
terized by thequantity
fℓψ := H



















...
0

[

Rψceℓ
]

0...


















(115)

As a result, the variation of w indu
ed by the global bias
z :=

∑

ℓψ∈O

βℓψ



















...
0
[

ceℓ
]

0...


















(116)is 
hara
terized by the ve
tor
Mz :=

∑

ℓψ∈O

βℓψ fℓψ (117)More pre
isely, from Eq. (112), w should then be 
or-re
ted as follows: w set

=w−Mz. The problem is thereforeto solve, in the LS sense, the equation w −Mz `=' 0, inwhi
h the 
olumn ve
tors of M , the fℓψ 's, are to be thor-oughly sele
ted. As 
lari�ed in Se
t. 9.5, this operation isperformed via a parti
ular Gram-S
hmidt orthogonaliza-tion pro
ess whi
h is interrupted as soon as the 
orre
teddata are 
onsistent with the model.9.4 Global adaptationOn
e the outlier set O has been identi�ed, the model isto be updated 
onsequently: Ak is 
ompleted by addingthe 
olumns asso
iated with the 
orresponding bias vari-ables βℓψ . These 
olumn matri
es have the followingblo
k form (see Eqs. (112), (65) and (62)):


















...
0

[

Rψceℓ
]

0...


















(118)
The global QR re
ursive pro
ess is then updated a

ord-ingly. The lo
al variable, the biases and the �oat ambi-guities are thus re�ned, as well as Rk and dk in parti
-ular (see Fig. 6). When the QR pro
ess is initialized, orwhen the ambiguities are �xed, the biases provided bythe adaptation pro
ess 
oin
ide with those provided bythe identi�
ation pro
edure (see Se
t. 9.3 and step 2.5 inSe
t. 9.5). The LS problem to be solved, whi
h is thenthe same, is simply handled in a di�erent manner.9.5 ImplementationIn the pro
edure des
ribed in this se
tion, the outliers ℓψare identi�ed progressively; see the �ow diagram shown inFig. 10. At the beginning of this pro
edure, O is thereforeempty. For ea
h ψ, we then introdu
e the set
Kψ := {ℓ : 1 ≤ ℓ ≤ nd} (119)
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t. 9.2)
Cψ,ℓ := max

(i,j)∈Gℓ
|wψ(i, j)| (120)we then 
onsider the quantity

Cmax := max
ν

ψ=(p;ν)
max

ψ=(φ;ν)
max
ℓ∈Kψ

Cψ,ℓ (121)At the beginning of the pro
edure, we therefore have
Cmax = |w|max; see Eq. (111).Given some probability of false alarm θ0, the thresholdparameter χ0 may be de�ned as the upper θ0/2 probabil-ity point of the 
entral normal distribution:
χ0 := Nθ0/2(0, 1)For example, when θ0 is equal to 0.001, χ0 is of the orderof 3.This threshold parameter may also be de�ned, heuristi-
ally, as a given multiple of the mean value of |wψ(i, j)|on G for all ψ.1. Entran
e test on CmaxWhen Cmax is smaller than χ0, the model is a

epted asit is: no outlier is to be sear
hed; one then goes to step 4.Conversely, if Cmax is very large 
ompared to χ0 (saylarger than 1000 for example), the QR pro
ess is reinitial-ized (see Se
t. 7). In the other 
ases, the DIA pro
edureis initialized by setting r = 1 and Π = ∅; r is a re
ursiveindex; the meaning of the auxillary set Π is de�ned instep 2.2 as soon as it begins to be built. At this stage,the `lo
al redundan
y' of the problem, Lr, has a givenvalue.2. Re
ursive identi�
ation of the outliers2.1. Current set of potential outliersGiven some nonnegative 
onstant κ ≤ 1, form the 
urrentset of potential outliers
Πr :=

⋃

ν

ψ=(p;ν)
⋃

ψ=(φ;ν)

{

ℓψ : ℓψ ∈ Kψ, Cψ,ℓ ≥ κCmax

}2.2. For ea
h potential outlier ℓψ ∈ ΠrPerform the following su

essive operations:a) When ℓψ /∈ Π, 
ompute fℓψ ; to do that, see the 
ontextof Eqs. (115), (110) and Se
t. 7.3. Then, set
gℓψ = fℓψ Π

set

=

{ {ℓψ} if Π = ∅
Π ∪ {ℓψ} otherwiseBy 
onstru
tion, Π is the set of potential outliers ℓψfor whi
h fℓψ has already been 
omputed.

QR solutionLo
al residual wEntran
e teston CmaxReinitializationPotential outliersIdenti�ed outlierIdenti�ed biasesUpdate redundan
yUpdate wInner teston CmaxGlobal adaptation
Figure 10: Flow diagram of the DIA pro
edure. Thispro
edure is based on an examination of the lo
al resid-ual w. This residual, with 
omponents wψ(i, j), is the ob-servational residual simply divided by the standard devia-tion σψp

η(i, j) of the original data; see the introdu
tion ofEq. (109). At ea
h step of the identi�
ation pro
ess, the up-dated values of w are analyzed on the grounds of Eqs. (121)and (120); see steps 1, 2.7 and 2.8. This allows the po-tential outliers to be sele
ted. The outliers 
an thus beidenti�ed, in a re
ursive manner, via a parti
ular orthogo-nalization Gram-S
hmidt pro
ess. This QR Gram-S
hmidtpro
ess also provides the iden�able biases (see Se
t. 9.2),and thereby the 
y
le slips if any. When the ambiguity arenot �xed, these biases are slightly re�ned through the globaladaptation pro
ess des
ribed in Se
t. 9.4.b) If r = 1 go to step 2.2
. Otherwise, at this level,
{g◦q}q<r is an orthonormal set. (This set is built, pro-gressively, via step 2.3.) Then, for ea
h integer q < r,
onsider the inner produ
t de�ned as follows:

ςq,ℓψ := (g◦q · gℓψ) ≡ [g◦q]T[gℓψ ]If ςq,ℓψ has not been 
omputed yet, 
ompute it, storeit in memory, and perform the Gram-S
hmidt orthog-onalization operation
gℓψ

set

= gℓψ − ςq,ℓψg
◦
qBy 
onstru
tion,

ςq,ℓψ = (g◦q · fℓψ)At the end of all these operations, gℓψ is orthogonalto g◦q for any q < r.
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) Consider the proje
tion of w on the one-dimensionalspa
e generated by gℓψ , i.e.,
(hℓψ · w)hℓψ hℓψ := gℓψ/‖gℓψ‖where ‖gℓψ‖2 ≡ [gℓψ ]T[gℓψ ]. The norm of this proje
-tion is equal to |(hℓψ · w)|, the absolute value of thequantity
γℓψ := (gℓψ · w)/̺ℓψ ̺ℓψ := ‖gℓψ‖2.3. Identi�ed outlierThe identi�ed outlier ℓ⋆ψ⋆ is de�ned as the dominant po-tential outlier, i.e., the potential outlier for whi
h |γℓψ | ismaximal:

ℓ⋆ψ⋆ := arg max
ℓψ∈Πr

|γℓψ |We then dis
ard ℓ⋆ψ⋆ from Kψ⋆ : Kψ⋆ set

= Kψ⋆ − {ℓ⋆ψ⋆}. Wethen set
◦r := ℓ⋆ψ⋆ O set

=

{ {◦r} if r = 1

O ∪ {◦r} if r > 1

γ◦r := γ◦r
g◦r := g◦r

/̺◦rHere, ◦ stands for outlier. At this level, O is the 
urrentset of identi�ed outliers:
O = {◦q}r

q=1By 
onstru
tion, {g◦q}r
q=1 is an orthonormal basis of the
urrent range of M ; ∑r

q=1 γ
◦
qg

◦
q is the proje
tion of w onthis spa
e. With regard to Eq. (117), we then set

β◦
r := β◦r

f◦
r := f◦r2.4. Components of g◦r in the basis of the f◦

q 'sThese 
omponents are denoted by uq,r:
g◦r =

r
∑

q=1

uq,rf
◦
qThey are 
omputed via the following QR Gram-S
hmidtformulas (see, e.g., Björ
k 1996):

uq,r =























− 1

̺◦r

∑

q≤q′<r

uq,q′ ςq′,◦r
if q < r

1

̺◦r

if q = rfor 1 ≤ q ≤ r. The uq,r's are the entries of the rth 
olumnof an upper triangular matrix U.

2.5. Identi�ed biasesA

ording to Eq. (117), the biases β◦
q are the 
omponentsof ∑r

q=1 γ
◦
qg

◦
q in the basis of the f◦

q 's:
r
∑

q=1

γ◦qg
◦
q =

r
∑

q=1

β◦
qf

◦
qDenoting by [γ◦] the 
olumn matrix with entries γ◦q (from

q = 1 to r), and likewise for [β◦], we have [β◦] = U[γ◦].The identi�ed biases are therefore to be updated as fol-lows:
β◦

q

set

=

{

β◦
q + uq,rγ

◦
r if q < r

ur,rγ
◦
r if q = r

(for 1 ≤ q ≤ r)2.6. Update the lo
al redundan
y
Lr

set

= Lr − 1If Lr = 0 go to step 3.2.7. Update w
w

set

=w − γ◦r g
◦
r2.8. Update Cmax

Cmax := max
ν

ψ=(p;ν)
max

ψ=(φ;ν)
max
ℓ∈Kψ

Cψ,ℓ2.9. Inner test on CmaxIf Cmax > χ0, update the re
ursive index: r
set

= r+1. Then,go to step 2.1.3. Global adaptationUpdate the global QR re
ursive pro
ess by taking a

ountof the identi�ed bias variables (see Se
t. 9.4).4. End10 Con
luding 
ommentsThe GNSS 
entralized approa
h presented in Lannes andGratton (2008) was restri
ted to the 
ase of RTK ob-servations with a single baseline of lo
al s
ale. Thatapproa
h was validated by pro
essing real GPS data indual-frequen
y mode. The present paper was devoted tothe extension of that 
ontribution to the general 
ase ofmultiple-baseline networks of any s
ale. (The extendedsatellite-
lo
k biases are not estimated.)To introdu
e the reader to the related 
on
epts, we �rstexamined the spe
ial 
ase where the GNSS graph is full:all the re
eiver-satellite signals of the GNSS network arethen available; see Se
t. 3.1. The 
arrier-phase integerambiguity ve
tor 
an then be de
omposed into three in-teger ambiguity 
omponents: the re
eiver, the satelliteand the DD ambiguity ve
tors; see Eq. (23).
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 graph theory 73The heart of the paper 
on
erned the extension of thisproperty to the general 
ase where the GNSS graph is notfull. This was done in Se
t. 4 with the aid of elementarynotions of algebrai
 graph theory. From a te
hni
al pointof view, the algebrai
 operations performed on the edgesof the GNSS graph are to be followed on the 
orrespond-ing GNSS grid; see Fig. 1. In this framework, as 
lari�edin Se
t. 4.2, the notion of 
losure delay generalizes thatof double di�eren
e. In pra
ti
e, a

ording to their def-inition (Eq. (37)), the 
losure delays are 
omputed viathe re
ursive di�erential pro
ess de�ned in Se
t. 4.2; seeExample 4.3. This pointed out, a 
losure delay is an al-gebrai
 sum of single di�eren
es; see the example givenin Remark 4.4. This shows that generalization does ne
-essarily make the problems more 
omplex. Instead, itprovides a theoreti
al framework whi
h leads to a betterunderstanding of the matter, and thereby to more e�-
ient te
hniques.As spe
i�ed in Se
ts. 5 and 6, the problem is stated andsolved in terms of redu
ed quantities. The notion of re-du
tion is 
losely related to that of 
entralization. Thisoperation simply amounts to solving a linear system, thesize of whi
h is at most equal to the number of satellitesother than the referen
e satellite; see Eqs. (73) and (72).In the approa
h adopted in this paper, the �oat solution isre�ned, re
ursively, by using the QR method; see Se
t. 7.The state transitions of the global variable, in parti
ularthose due to a 
hange of the GNSS graph, have beenexamined in this framework. The example studied inSe
t. 7.4.3 
on
erns 
omplex 
ir
umstan
es. The notionof transition spanning tree is then essential for solving theproblem in an elegant and e�
ient manner; see Fig. 8.At ea
h epo
h, the QR method provides, in parti
ular,the �oat ambiguity solution and the Cholesky fa
tor ofthe inverse of its varian
e-
ovarian
e matrix. To solvethe 
orresponding integer-ambiguity problem, this upper-triangular matrix is to be de
orrelated. As the size of thismatrix may be very large, a parti
ular implementation ofthe LLL algorithm was proposed; see Se
t. 8.2.As shown in Se
t. 9, the 
entralized mode is parti
ularlywell suited to the QR implementation of the DIA meth-ods. On ea
h edge of the GNSS graph, or equivalently,on ea
h point of the 
orresponding grid, the observationalresidual is then simply divided by the standard deviationof the 
orresponding data; see the 
ontext of Eq. (109).The sear
h for the potential outliers is then performed bysimple inspe
tion of the absolute value of these redu
edquantities; see Eqs. (121), (120) and step 2.8 in Se
t. 9.5.The statisti
al tests are thereby very simple; see steps 1and 2.9 in Se
t. 9.5. This pointed out, when some dataare missing, the notion of identi�able bias is to be takeninto a

ount; see Se
t. 9.2.The operations involved in the sele
ted QR implementa-tion 
an be stored in memory very easily; see Se
t. 7.3.As a result, the variational 
al
ulations involved in the

DIA methods 
an be performed in a very e�
ient man-ner; see step 2.2 in Se
t. 9.5. Furthermore, the QR globaladaptation step of the DIA method ni
ely 
ompletes theQR Gram-S
hmidt step 2.4 of the lo
al identi�
ation pro-
ess des
ribed in Se
t. 9.5. The identi�able biases, amongwhi
h the 
y
les slips (if any), are thus estimated in twodi�erent ways; see Lannes and Gratton (2008).Referen
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