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Abstract. A new approach to GNSS networks is pre-
sented. Here, this approach is restricted to the case where
the user handles the network data for his own objectives:
the satellite-clock biases are not estimated. To deal with
the general case where some data are missing, the corre-
sponding theoretical framework appeals to some elemen-
tary notions of algebraic graph theory. As clarified in the
paper, the notion of closure delay (CD) then generalizes
that of double difference (DD). The body of the paper
is devoted to the implications of this approach in GNSS
data processing. One is then led to define local vari-
ables, which depend on the successive epochs of the time
series, and a global variable which remains the same all
over these epochs, with however possible state transitions
from time to time. In the period defined by two successive
transitions, the problem to be solved in the least-square
sense is governed by a linear equation in which the key
matrix has an angular block structure. This structure is
well suited to recursive QR factorization. The state tran-
sitions induced by the variations of the GNSS graph are
then handled in an optimal manner. Solving the integer-
ambiguity problem via LLL decorrelation techniques is
also made easier. At last but not the least, in centralized
mode, this approach is particularly well suited to quality
control.
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Quality control, DTA. Ambiguity resolution, LLL.

1 Introduction

When processing times series of global positioning data,
one is led to introduce ‘local variables’ u; which depend
on the successive epochs ¢ of the time series to be pro-
cessed, and a ‘global variable’ v which remains the same
all over these epochs with however possible state transi-

*This work was also supported by the CERFACS (France): the
European Centre for Research and Advanced Training in Scientific
Computation.

tions from time to time. For example, the latter occur
when some receiver-satellite signals appear or disappear.
In the period defined by two successive transitions, the
problem to be solved in the least-square (LS) sense is
governed by a system of linear equations of the form

Ajuy + Biv = by
Asug + Bov = by
(1)

Apug + Brv = by,

The definition of the variables u; and v depends on the
GNSS system under consideration. The components of uy,
and v are real numbers, some components of v being in-
tegers: the integer ambiguities of the problem.

In matrix terms, Eq. (1) can be displayed as follows:

A1 Bl (5% bl
A2 B2 u9 b2
: 2 (2)
A, By Uk by
v

As specified in Sect. 6.3 of Bjorck 1996 (see also Golub
and van Loan 1989, Bierman 1977), the angular block
structure of matrix [A B] is well suited to recursive QR fac-
torization. When dealing with large-scale problems, nu-
merical accuracy can thereby be improved.

More interestingly, the corresponding techniques prove
to be very efficient for GNSS data processing and qual-
ity control; see, e.g., Tiberius (1998), and Loehnert et
al (2000). This is particularly the case for the GNSS cen-
tralized approaches (see Lannes and Gratton 2008). In
particular, in the quality-control procedures, the identifi-
cation of biases is then made easier. The approach pre-
sented in Lannes and Gratton (2008) was restricted to the
simple case of continuous observations in RTK mode with
a local-scale single baseline (see, e.g., Table 1 in Feng and
Li 2008). The aim of the present paper is to extend this
approach to the general case of the GNSS networks.
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Other approaches have already been developed in this
field. In particular, to raise the integer ambiguities in
a simple manner, appropriate linear combinations of the
original signals can be considered. The corresponding
widelane techniques are very popular; see, e.g., Feng and
Li (2008). This pointed out, when different approaches
refer to the same physical models, the results must of
course be the same. The best approach is then the most
general and the most efficient. For example, with regard
to integer-ambiguity resolution, the decorrelating prop-
erties of the widelane techniques are not optimal (see
Teunissen, 1997). Likewise, the principle of the quality-
control procedures must be well embedded in the theo-
retical framework of the selected approach.

2 Observational equations

The global positioning techniques are based on the fol-
lowing observational equations. For each frequency v, for
each receiver-satellite pair (i,7) = (r;,s;), and at each
epoch ¢, the carrier-phase and code data are respectively
of the form (see, e.g., Mercier and Laurichesse 2008)

q)v,t(ia.]) = Pt(
+IF ) -

§) + Tl §) — aw (i, )
£ = awlgbn (i) — gSr ()] (3)
+ AN (i 5) + €l )

P, 1(i,5) = pe(,

+[£86) -

3)+ Te(i, §) + o de(i, j)

(s) (r) (s) (4)

ot ] + gy (1) — 92 (7))

tEpuit (Z’j)
In these equations, which are expressed in length units,
pi(i,7) is the receiver-satellite range: the distance be-
tween satellite s; (at the time ¢ — 7 where the signal is
emitted) and receiver r; (at the time ¢ of its reception);

T:(i,7) and I;(i,j) are the tropospheric and ionospheric
delays, respectively. Here,

a, = Vit =X2/\3 (5)

The A,’s denote the wavelengths of the carrier waves.
Note that a,, = 1. The integers N,(i,j) are the integer
carrier-phase ambiguities: N, (i,7) € Z.

The instrumental delays and clock errors that for a given
epoch depend only on 7; are lumped together in the ‘ex-
tended receiver-clock biases’ f(;,t( ) f (r)( ). Likewise,
the instrumental delays and clock errors that for a given
epoch depend only on s; are lumped together in the ‘ex-

tended satellite-clock biases’ f ¢t( j) and f(s)( ).

Similarly, g((;l, gl(fg( ) and g(b)( i), gI(;SZ( /) denote the biases

induced by the time group delays

In this model, which will be refined in Sect. 9 for quality
control (see Eq. (112)), the expectation values of the noise
terms €4..¢(7, j) and €.,,4(4, j) are supposed to be nought.

In this paper, we also assume that these noises are not
mutually correlated.

A priori, on the grounds of Egs. (3) and (4), two op-
tions are to be considered. In the ﬁrst one, the extended
satellite-clock biases f<i(> Z( /) and f ( ) are not estimated.
This option is well suited to a user who deals with the
network data for his own objectives. In the second one,
these biases are to be estimated; they are broadcasted
to the network users for their precise point positioning
(PPP). The present paper, which completes the original
contribution of Lannes (2008), is devoted to the first op-
tion only. The second will be dealt with in a forthcoming
contribution.

For our present purposes, we write the observational equa-
tions (3) and (4) in the form

D,¢(1,7) = pe(i, §) + Ty(i, §) — anLi(i, §) + AN (i, )
™) (s) (6)
+¢¢ut()+¢¢yt()+5¢ut( 2J)

Pu,t(ihj) = pt(lhj) + Tt(lhj) + aVIt(iaj)

0 e (D
+ U @0 + 0% () + epnn(iy 4)

where
P 0 = £ — gl (0) ©
O,6) = =[I50) = awg$h ()]

and
@34>:= £RG) + 0ugl) (i) o)
o) (@) = =I5 G) + gl ()

3 Preliminary notions

We first introduce the notion of ‘GNSS grid’ and the re-
lated concept of ‘GNSS graph’ (Sect. 3.1). We then de-
fine the GNSS spaces to be considered (Sect. 3.2). The
functions lying in these spaces can be decomposed in a
‘differential manner.” The related notion is introduced in
Sect. 3.3. The observational equations are then rewritten
accordingly (Sect. (3.4).

3.1 GNSS grid and GNSS graph

Let 9(4,j) be a function such as ®,4(i,5) or p¢(i,7) for
example. Such a function takes its values on the points
of a rectangular grid Gyo. When the GNSS device in-
cludes m receivers and n satellites, Gy has m lines and
n columns. More precisely, as some data may be missing,
the values of ¥ are defined on n, grid points with

Ne < MN (10)

In the example presented in the upper part of Fig. 1,
these points are surrounded by a small circle. They form
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Figure 1: GNSS grid G and GNSS graph G.
In the example shown here, the GNSS graph
includes 7 vertices (3 receivers and 4 satellites)
and nine edges; m =3, n = 4, nc = 9. The
data corresponding to the receiver-satellite
pairs (71, s2), (r2,s3) and (r3, s1) are missing.

a subgrid of Gy denoted by G: the GNSS grid. (Note
that G implicitly depends on ¢.) As illustrated in the
lower part of this figure, the points (4, j) of G correspond
to the ‘edges’ (r; , s;) of the GNSS graph to be considered;
& denotes the set of its edges; ne is their number. The
receivers and the satellites involved in the definition of
these edges define the ‘vertices’ of this graph; V denotes
the set of its vertices, and n, their number:

ny=m-+n (11)
A GNSS graph G is therefore defined by the pair (V,€):
Gg=g(v,¢&)

Such a graph is connected (e.g., Biggs 1996): given any
two vertices of V, there exists a path of edges of £ con-
necting these vertices. When n, = mn, the GNSS graph
is said to be ‘full.” Note that a full GNSS graph is not
‘complete:’ mn < ny(n, —1)/2.

3.2 Edge-delay spaces

A function 9 taking its values on G, and thereby on &, can
be regarded as a vector of the ‘edge-delay space’ E = R".
The values of ¥ on G are then regarded as the components
of ¥ in the standard basis of this space. The norm in F
is therefore defined by the relation

WIE= > 196)F (12)

(1,7)€G

We now adopt the notation according which ¥, ; stands
for @, if ¢y = (¢;v), or for P,, if ¢ = (p;v). The
variance-covariance matrix of Wy is denoted by [Vj ].
Let us then consider a function ¥ of type v, for example

a phase observational residual. At epoch ¢, the quadratic

size of such a function is defined by the relation
1913, = [ [Vl [Y] (13)
= (0-V, 0

Here, [9], is the column matrix whose entries are the
components of ¥ on G; ( - ) is the inner product of the
Euclidean space E. The space of functions ¢ with inner
product

(W' | 0)yy = (9 V10) (14)

is denoted by Ey ¢. This space can be referred to as the
‘edge-delay space’ of type v at epoch t.

Let us now introduce the following Cholesky factorization
of the inverse of [V}, 4]:

Vit ™" = [Up )" [Uy.d] (15)

Here, [Uy ] is an invertible upper-triangular matrix. Set-
ting

Oy =Up ¥ (16)
we have, from Eqgs. (13) and (15),
191135, = 195 ¢ 1% (17)

3.3 Differential decomposition of the
edge-delay functions

To introduce the reader to this notion, we first restrict
ourselves to the special case where the GNSS graph is
full: G = Gy (ne = mn). The extension to the general
case derives from the analysis presented in Sect. 4.2.

In the special case under consideration (see Fig. 2), the
notion of ‘single difference’ (SD) is associated with the
following operation on Gy:

94 (i, ) = 9, §) = 9(1, j) (18)

Here, rq is the selected reference receiver: 954 vanishes
on the first line of Gy. Let s; now be the reference
satellite. The notion of ‘double difference’ (DD) is then
through the relation

9199, 5) o= B (i, ) — 0(0, 1) (19)

By construction, 999 vanishes on the first line and on
the first column of Gy (see Fig. 2). From Eq. (18), we
have

i 5) = W6.)) -
= 9(,5)

O(L,5)] =[0G, 1) -
—9(,1) = [9(1,5) -

9(1,1)]
9(1,1)]
As a result, any edge-delay function ¥ can be decomposed

in the form

0(i, §) = 9 (i) + 96 (5) + 0199 (i, 5) (20)
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Figure 2: Full GNSS grid. In the special

case where the GNSS graph is full, the double-
difference function 9199 is defined by its values
on the (m — 1)(n — 1) points shown here as red
dots; see Eq. (19). By construction, 9194 van-
ishes on the other points shown as black dots.

where

(i) == 93, 1) (21)
and

IF(7) = 9(1, ) — 9(1,1) (22)

As it is the case here, throughout this paper, the reference
satellite, here s;, defines the origin of the receiver and
satellite delays: 9I°1(1) = 0.

The integer-valued function N, (i,j), in particular, can
therefore be decomposed in the form

N, (i, §) = NJ(i) + NE () + NG, ) (23)
where

NI() == N, (i, 1) (24)
and

NE(j) == No(1,5) = N, (1,1) (25)

3.4 Reference equations

According to Eq. (23), the phase equation (6) can be
expanded in the form

q)Vyt(iaj) = Pt(%]) + Tt(%]) - Ot,,[t(i,j)
+ A NG ) (26)
+ @4 (1) + @5, () + 40 (.)

in which
Gl = )+l () o
GEL.G) = Bl - el

where
Poad) = P+ AN (0) -
o) = @5 (0) +ANT(G)

Note that, by construction, ¢/ (1) = 0. The quantities

st

gé[rju,t(i) and gb[sju,t(j) for j # 1 are then regarded as real

variables without any physical interest. The integer vari-
ables are then the DD ambiguities Nl (i,7) for i # 1
and j # 1; see Fig. 2. The other variables, those induced
by the terms p;, T; and I; via the linearization of the
problem, are introduced in Sect. 5.

The code equation (7) is then written in the form

Pl/,t(iaj) = pt(laj) + Tt(laj) + al/It(iaj)

S Sy o (29)
+ (pp;y,t(l) + @p;u,t(]) + Ep;u,t(l’j)
where (see (Eq. (9))
@g]u,t(i) = @;ﬁl,t(i) + ‘P;()S;B/,t(l) (30)
SD;E;S;]V,t(j) = wéf)u,t(j) - 90;(;8;2/,1:(1)
Note that goi,s;]l,’t(l) = 0. The quantities gog;]y,t(i) and

gog,s;]l,’t(j) for 7 # 1 are other real variables of the prob-

lem.

4 Theoretical framework

We first introduce some elementary notions of algebraic
graph theory (Sect. 4.1). We then establish the general
properties underlying our approach (Sect. 4.2).

4.1 GNSS spanning tree and loops

As illustrated in Fig. 3, a spanning tree of G = G(V, )
is a subgraph Gy = G(V, &) formed by n, vertices and
ny — 1 edges, with no ‘cycle’ in it. Here, ‘cycle’ is used in
the sense defined in algebraic graph theory (Biggs 1996).
In the GNSS community, to avoid any confusion with the
usual notion of wave cycle, it is not forbidden to substi-
tute the term of ‘loop’ for that of ‘cycle.” In this context,
the number of loops defined through a given fixed (but
arbitrary) spanning tree is the number of edges of £ that
do not lie in & . These edges,

c(q) = (ri(g) » 8j()) (31)

are said to be ‘loop-closure edges’ (see Fig. 3). Their

number is denoted by n:

Ne = Ne — (ny — 1) (ny =m+n, ne < mn) (32)
To select a GNSS spanning tree, the edges of £ are first
ordered somehow. The corresponding sequence is of the
form

e(Q) = (Tiq asjq) (q = ]-a .. '777’8)

The algorithm is then the following: set ¢ = 0, ng = 0,
and & = 0 (the empty set). Then,
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Figure 3: GNSS spanning tree and loops. The
black edges of G (the graph introduced in Fig. 1)
are the edges of the selected spanning tree Gs:.
The points of the corresponding subgrid Gg; are
shown as black dots. The remaining points of G
(the red dots of G) correspond to the loop-closure
edges (the red edges of G). We then have one loop
of order 4, and 2 loops of order 6: (r2,$4,71,51),
(r3, s3, T1, S1, 2, s2) and (73, sa, 71, S1, T2, S2).

1. If ngg = ny — 1, terminate the process; otherwise,
set

set g=q+ 1.

2. When the vertices of e(q) are not connected via
set

edges of &, set £ = E U {e(q)} and ng = ng; + 1;
then go to step 1.

The subgrid of G corresponding to the edges of & is
denoted by Gs. By construction, the spanning tree thus
found depends on how the edges are ordered.

Example 4.1. To show, in concrete manner, how this
algorithm works, we now consider its action on the grid G
of Fig. 3, its points being ordered line by line.

The points of the first line of G, the points (1,1), (1,3)
and (1,4), define the first 3 edges of E:

Ea ={(r1, 1), (r1,83), (r1,54)}

By construction, four vertices of G are then connected:
r1, S1, S3 and s4.

(ns = 3)

The next point of G, the first point of line 2, is associated
with edge (r2,s1). As ro and sy are not connected via
edges of &, this edge cannot be not a loop-closure edge.
We therefore set

set
gst:gstu{(r%sl)} (nst :4)
Five vertices are then connected: ry, s1, s3, s4 and rs.

The next point of line 2 is associated with edge (r2, s2).
As r9 and so are not connected via edges of &, we set
Est Sétgst ) {(r27 52)} (nst = 5)

Six vertices are then connected: r1, s1, S3, S4, 72 and ss.

The next point of G, the last point of line 2, is associated
with edge (r2,s4). As ry and s4 are already connected,
this edge closes a loop with some edges of ;. As a result,
this edge is the first loop-closure edge: ¢(1) = (12, s4); see
Eq. (24). The corresponding loop, (r2,S4,71,51), is of
order 4: it includes 4 edges (see Fig. 3).

The next point of G, the second point of line 3, is asso-
ciated with edge (r3, s2). As r3 and sy are not connected
via edges of &, we then set

gst S;tgst U {(TB; 52)} (nst = 6)

As all the vertices of £ are then connected, the algorithm
stops: & is then completely defined.

The remaining points of line 3 therefore define two loop-
closure edges: ¢(2) = (r3,s3) and ¢(3) = (r3,s4). These
loops are of order 6; see Fig. 3.

Remark 4.1. In the special case of the graph shown in
Fig. 3, there exist spanning trees for which the three loops
are of order 4. In general, the choice of the spanning tree
is arbitrary; see however Remark 4.2.

Remark 4.2. As explicitly shown in Sect. 7.4.3, to han-
dle some ‘graph transitions,’ one is led to order the points
of G in a more subtle manner. To write down the al-
gorithm yielding the corresponding spanning tree, the
reader is invited to build the spanning trees defined in
the example given in that section (Example 8.1).

Remark 4.3. In the special case examined in Sect. 3.3,
the GNSS graph is full: G = Gy. The points of Gy ob-
tained by spanning Gg line by line are then the n points
of its first line, and the remaining m — 1 points of its first
column (see Fig. 2). The other points, which form a sub-
grid with m — 1 lines and n — 1 columns, then correspond
to loop-closure edges. All the loops are then of order four.

4.2 Reference properties

According to the properties established in this section,
the analysis presented in Sect. 3.3 can be extended to the
general case of GNSS networks with missing data. We
first introduce the key notion of ‘vertex-delay space.’

Vertex-delay space. The functions of the form

(i j) = M@ + () (with pFI(1) =0)  (33)
form a subspace of the edge-delay space E. This sub-
space, denoted by F, can be referred to as the vertex-
delay space. By definition, the ‘receiver-delay space’ El]
is the space of functions "] (). Similarly, the ‘satellite-
delay space’ EF¥l is the space of functions ¢[¥(j) such that
©Fl(1) = 0. By construction, F is the direct sum of El!
and EB:

F = E 4 EB) (34)
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We thus have

dim B = m dimEF =n —1 (35)
and
dim F = dim B + dim EF = n, — 1 (36)

Property 1. Given any edge-delay function ¢ taking its
values on G, for each spanning tree Gy, of G, there exists
a unique set of receiver and satellite delays

©:= {oM()}1 v ()}, with 9F(1) =0

such that 9(i,5) = 9 (i) + 95(j) on the points of G.

More concretely, the following process provides these de-
lays in a recursive manner.*

Recursive differential process. Set 9I°/(1) = 0; then,
span the points of Gy line by line (see Fig. 3). For each
point (4, 7) thus encountered, then proceed as follows.

If 951(4) has already been fixed, and 9(3) is not fixed
yet, set

o) = (i, ) — 9P ()

If 9I(i) has already been fixed, and 9¥(;) is not fixed
yet, set

O (5) = (i, ) — 9 (4)

To obtain all these delays, G is to be spanned in this
way as many times as required. The delay set © is unique.
Indeed, applied to a function 7 vanishing on the points
of Gy, this recursive process provides nought delays.

It is important to point out that the only operations in-
volved in this process are differences. As a result, if ¢ is
an integer-valued function, the receiver and satellite de-
lays 9 (i) and 951 (5) lie in Z.

Example 4.2. To illustrate this recursive differential
process, we now follow its action on the grid Gs; of Fig. 3.
As 9P1(1) is nought, we then obtain successively:

(1) = 9(1,1) —9BI(1) = 9(1,1)
IB1(3) = 9(1,3) — 0I(1)
IB(4) = 9(1,4) — 9l(1)
I(2) = 9(2,1) —9BI(1) = 9(2,1)
IB1(2) = 9(2,2) — 9I(2)
I (3) = 9(3,2) — vF(2)

Closure delays. According to Property 1, the quantities
9, ) == 9(i, 5) — [9¥5) + 91 (j)] (37)

*This type of recursive process was introduced for the first time
in ‘phase-closure imaging;’ see Sect. 2E in Lannes (2005).

vanish on the points of Gg. The values of 9¢ of inter-
est are therefore defined on the remaining points of G,
i.e., on the n. loop-closure edges of G (see Fig. 3 and
Eq. (32)). These quantities can therefore be referred to
as the ‘closure delays’ of 9, hence the notation cd or CD.

Remark 4.4. The notion of closure delay generalizes
that of double difference; see Eq. (20), Figs. 2 and 3. In
fact, the CD’s are algebraic sums of SD’s. For example,
with regard to Example 4.2, the closure delay 9[°(3, 4)
can be displayed as follows (see Fig. 3):

[19(3, 4) - ﬂ(la 4)] + [19(17 1) - 19(2a 1)] + [19(27 2) - 19(37 2)]

Property 2. Any edge-delay function 9 taking its values
on G can be decomposed in the form

9(i,j) = 0% (i) + 0% (5) + 9, 5)
For a given spanning tree, this decomposition is unique.

This property is a simple transcription of Eq. (37). The
uniqueness of this decomposition results from Property 1.

Example 4.3. With regard to the GNSS grid of Fig. 3,
let us consider (for simplicity) the ambiguity function

The recursive differential process of Example 4.2 applied
to this function yields the following components of N:

NET: -1 -1 * -1

NI 0 2 % -3

* -1 -3

0 0

Nledl. 0 5
* 0

Closure-delay space. The functions ¥ that vanish on Gyt
form a subspace of E denoted by El°d. This space is re-
ferred to as the ‘closure-delay space.” For example, when
G is full, El°d is the corresponding DD space E!99, From
Eq. (32), we have

dim Bl = p (38)

According to Property 2, E' is the ‘oblique direct sum’ of
El BBl and Eledl;

E = EU 4 gl pled (39)
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5 Statement of the problem

By taking account of Property 2, the phase equation (26)
is then written in the form

Dy =pe+ T — Dy + A\ NEY + Gt + g (40)

where 3., , = Gy, s + Bo i
Likewise, in terms of functions taking their values on
grid G, the code equation (29) is now read as follows:

Pv,t = Pt + Tt + aVIt + Pp;v,t + Epiv,t (41)

Herea cpp;v,t = sog;]u,t + SDLS;]V,t'

As specified in this section, the problem can then be
stated in the terms of Eq. (1); see the context of that
equation.

At this level, depending on the network geometry, some
constraints may be introduced. For example, when the
length of baseline r;, <> r;, is sufficiently small, the con-
straints T;(i1, ) = T¢(i2,j) and L(i1, j) = L(i2, j) are to
be imposed. In most cases encountered in practice, the
variables p;(, j), Ti(4, j) and I;(i, 7) are linearly expanded
in terms of other variables. In the general case, some of
the latter depend on ¢, while others not; see, e.g., Feng
and Li (2008). In other terms, the first ones are ‘local’
variables, while the others are ‘global’ with however pos-
sible transitions from time to time.

In the approach presented in this paper, the local vari-
ables @g¢.,,+ and ¢y, + are regarded as particular variables
of the problem. The other local variables, such as those
involved in the linearization of p; and T}, are lumped to-
gether in some variable u;. In general, the global variable
v includes two blocks:

-[2]

Va

The entries of v, are the integer CD ambiguities N (4,7).
The entries of v}, are simple real numbers. For example,
when the position of some receivers and I;(i,j) are ex-
panded as polynomial functions of ¢, the entries of v}, are
the corresponding unknowns. This is also the case when
orbital parameters are to be retrieved.

As is well known, in a first step (see Sect. 8 for the sec-
ond), the integer variables are also dealt with as ‘float
variables,’ i.e., as simple real variables.

Let us denote by Sp = {s1,s2,...,5s,} the series of
satellites involved in the process until epoch t; included.
A given satellite may disappear and reappear in the same
run. Such a satellite is then regarded as a new satellite. In
other words, whenever this occurs, a new satellite is added
at the end of this series. The ny satellites of epoch t; form
a subset Sy, of Si: ny < Ag.

To introduce the reader to what is essential, we first re-
strict ourselves to the case where the GNSS graph G does

not change in the current run [t1,...,%.,...,t;]: no state
transition occurs in this interval. In this case, we of course
have ny = ny.

5.1 Optimization principle

In the context previously defined, the observational equa-
tions (40) and (41) therefore lead to equations of the form

\I}qpy,ﬂ = .»47¢,,,<;'LL,i + Bw,,{’u + Py + Eyk (43)

with ¢y . in F. For clarity, x stands for ¢.; ¥y , thus
stands for ®, , if ¢ = (¢;v), or for P, . if ¥ = (p;v);
Ay and By, are linear operators. The notation W .
means that the zero-order terms of this linearization are
taken into account; see, e.g., Eqgs. (14), (17) and (18)
in Lannes and Gratton (2008). Here, the variable ¢y
corresponds to the quantities ¢4, ¢ and ¢y, ¢ of Eqs. (40)
and (41), respectively.

The problem is to minimize the objective functional (see
Eq. (13))

3(1},1, vy Ugy e Uk, Vs ooy Pk Ppivyk s - - )
k w:(PW) (44)
=220 D () = eunlin
k=1 v p=(gw)
where, from Eq. (43),
9'4[) (U,{, U) = \I~I’Lb,li - (A'Lp,nun + Bwyﬁ’l)) (45)

For each frequency, the sum in v includes two terms, a
phase term and a code term, hence the notation adopted
in Eq. (44).

In our approach, this minimization is performed in two
steps. The first step is to minimize § in the variables
Pp, and @y, for K = 1,...,k, and for each &, for
all v. We now clarify this point.

Given any ¢ in E, in particular for 0y (u., v), let us set

5. = argmin [ — |7, . (46)
pEF

As illustrated in Fig. 4., ¢y _ is the point of F' closest
to ¢, the distance being that induced by the norm de-
fined on Ey x; ¢y, ,, is therefore the projection of ¢ on F
in Ew’,{:

©or =Pyt (47)

Let us now denote by 7%’,{ the projection (operator) of Ey,
onto the orthogonal complement of F":

P o0 =1 = Py o0 (48)
From Eq. (44), the second step, the heart of the problem,
is therefore to minimize the reduced functional

Sr(ula ceey Uy e 7ukav)
k p=(p;v) (49)

=35 N B )|

w=l v p=(¢;v)
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F (e}
Py %
| 9lcd]
E, Ew,n /F/
—1.q/
Vo Yy
b 4

0 ’ LY

Figure 4: Centralization and reduction. In this ge-
ometrical illustration, Ey . is the edge-delay space
of type ¥ at epoch t. (see Sect. 3.2); F is the
vertex-delay space; F ,. is the orthogonal comple-
ment of F in Ey ., whereas F’ is the orthogo-
nal complement of F' in the Euclidean space FE.
The functions lying in F satisfy the ‘centralization
property’ 4; ¢, . is the orthogonal projection of o
on F in Ey, ., whereas 9, ,, is the orthogonal pro-
jection of ¥ on Fj .: 0 . =9 — ¢ .. According
to Property 3, waiﬁ{b,,{ lies in F’. By definition,
9, . is equal to Uy, U, . where Uy . is defined via
Eq. (15). The norm of ¥, , in Ey . is equal to
that of 9y, , in E; see Egs. (56) and (12). As justi-
fied in Sect. 5.3, 9y, ; is said to be the ‘¢-reduced
form’ of 9. Note that Vw_,;z%ﬁ =U, .9 .. In the
special case where the variance-covariance matrix
of ¥, , is proportional to the identity, F’ coincides
with F ..

5.2 Related properties

Denoting by F”’ the orthogonal complement of F' in E, we
then have the following property (see Fig. 4):

Property 3. The vector ¢y, is the vector ¢ of F for
which waﬁl (9 — ) lies in F'.
Indeed, for any £ in F', we have
19 = (0% + O = 119 — 5 L% +11EN7,
+2(€ 19— 9y ) ym

hence the property from Eqgs. (46) and (14).

As specified below, the functions of F’ satisfy particular
‘centralization properties.’

According to its definition (see Fig. 4), F" is the space of
functions ¥ such that

> (i,5)90,5) =0

(1,7)€G

(for any ¢ in F) (50)

From Eq. (33), the term on the left-hand side of this

equation can be expanded in the form

> M) + e ()] 9G, 5)

(4,7)€G

i=1 JEL;
n
+ 3 eHG) S 0, )
j=2 i€C;

Here, £; is the subset of G characterizing its i*" line:
L;:={j:(i,7) € G, i being fixed} (51)

Likewise, C; is the subset of G characterizing its j*" col-
umn:

Cj:={i :(i,j) € G, j being fixed} (52)
The following property then results from Eq. (50):

Property 4. The functions lying in F' satisfy the fol-
lowing conditions:

> 9(i,j) =0 (fori=1,...,m)

JEL:
> 9(,4) =0 (for j=2,...,n)

i€Cj

Note that the second condition then also holds for j = 1.
For any 1 in F’, we thus have

> 0(i,j) =0 (fori=1,...,m)

JEL:

> 0(,4) =0 (forj=1,...,n)

i€Cj

In the special case where the GNSS graph is full, the
lines and columns of G are also full. One then retrieves
the characterization property of the ‘double-centralized
functions’ of Shi and Han (1992):

> 0(i,§) =0 (fori=1,...,m)
j=1

> 0(i,§) =0 (forj=1,...,n)
=1

5.3 Reduced equations

According to Egs. (17) and (16), we have, for any ¢ in F,
1P w9 = NP 905l
= ||Uw,ﬁrpwl,f£19||2E
Setting (see Fig. 4)
191;,” = ’Pw',,,iﬂ =9 — (p,lO/)’K (54)



Lannes and Gratton: GNSS networks in algebraic graph theory 60

and

D 1= Uy (55)
we therefore have

192 e l%n = 193, (56)
Note that

Vg = Ry ¥ (57)
where

Ry = Uy wPion (58)

As the matrix elements of Uy, ,, are homogeneous to the in-
verse of a length (see Eq. (15)), ¥}, , is without any phys-
ical dimension. According to Eqs. (46), (54) and (56),
the smallest value of || — ||, .., ¢ spanning F', is equal
to 19y .lly.. = 19}, <|le. For example, for any spanning
tree, we have ||[9), ||, . < [|9°Y||,, ; see Fig. 4; 9%, can
therefore be regarded as the ‘ip-reduced form of . Here,
superscript r stands for reduced. This pointed out, it can
be shown that

195l = [9% <] Vi ] '[9 ] (59)
where [V ] is the variance-covariance matrix of W, .

From Egs. (49), (45), (56), (57) and (58), the reduced
functional to be minimized is therefore of the form*

il

TE(ULy e vy Uy v ey Uy V)
k v=(pv) . . ) , (60)
=D 00 D0 M~ (A e + B0
k=1 v w:(¢»'/)
where
A =Ry Ay By =Ry By (61)
and
\Ilizy'i = Rw,ﬁ\p’tb,n (62)

The reduced equations to be solved in the usual LS sense
are therefore the following:

Ajyu + B o =87

AL+ BE v =08 (63)

AS, pune + B o =07

For each «, we thus have an equation for ¢ = (¢;v), and
another one for ¢y = (p;v), and this for all the frequen-
cies v to be considered.

*This functional can equally well be obtained, directly, by con-
sidering the projection of Eq. (43) onto F¢ .. Indeed, Eq. (60) then
derives from Egs. (59) and (54).

In the dual-frequency case, for example, these equations
can therefore be displayed in the block form (1) in which

r r
P;v1,k Piv1,k
r r
diva,k p;va,k
Ak = Bk = (64)
r r
piv1Lk piv1,k
r r
p;v2,k piv2,k
and
r
(I)l/l,k
r
1/27k
bk = - (65)
r
Pvl,k
pr
Vz,ki

As clarified in Example 5.1 (Sect. 5.4), the entries of the
matrices Ay, By and by can easily be computed.

5.4 Reference special case.

To illustrate our analysis in a concrete manner, we now
consider the important special case where the variance-
covariance matrix of the observational data Wy, ,, is diag-
onal (see Liu 2002):

[Visi] = o, diag(m.(i, 7)) (on G) (66)

Here, 012/) is a ‘reference variance;’ 7)(i, j) is a nonnegative
weight function. Note that Uy . is then defined by the

relation
1 .. 1
[Uy,x] = —diag | ——— (on G) (67)
oy (4, 7)

From Eq. (46), ¢y, . then depends only on . For clarity,
let us then set

§:=¢%,  Oui=0M3E) &, =6l()) (68)
and
1
e e— on G
wn(iy ) = { MlBd) (69)
0 otherwise

From Properties 3 and 4 (see also Eq. (33)), we then have

Z w,{(i,j){ﬂ@j) - [5r,i + 55,]'}} =0
e (fori=1,...m)

> wli: {000, 5) = [bri + 8551} =0

s
e (forj=2,...n)
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i.e.,

Z wn(i;j) [5r,i + 53,]‘] = Z WR(Z’J)’&(Z’])

JEL; JEL;

ZWHZ] 5”+5sj ZWHZ]

i€Cy i€Cy

(fori=1,...m)

(for j=2,...n)

We are thus led to introduce the quantities

Qrai = Z wﬁ(i’j)

(fori=1,...m)

JEL:

Qg zz:wﬁ(i,j) (for j=2,...n)
i€Cy

and

Ori = > wili, )0(i, ) (fori=1,...m)
JEL;

s == Z wi(1,7)0, 5) (forj=2,...n)
i€Cj

The equations to be solved to determine ¢ can then be
written in the form

n
Qr,i 5r,i + Z Q@j (5573‘ = Gr,i (fOI‘ 1=1,.. m)

=2

m
Z Qij 0ri + ws,j 0s,5 = bs 5

i=1

(for j=2,...n)

i.e., in matrix terms,
[Q]T[ér] + [Qb][és] = [95]

Note that [€2,] is a m x m diagonal matrix, while [Q] is a
(n—1) x (n—1) diagonal matrix; their inverses are trivial.
By construction, [Q] has m lines and n — 1 columns. As
clarified below, Eq. (70) can be solved by computing the
inverse of a matrix with size (n — 1) x (n — 1) or m x m.
We are thus led to consider two cases.

(70)

Casel: n—1<m

From the first equation (70), we have
[6:] = [€2:]77 ([6:] — [2][65]) (71)

hence, from the second,

[6]165] = [6:] — [Q] T[] (6]

where [€] is the following (n — 1) x (n — 1) matrix:

[Qs] = [Qs] - [Q]T[Qr]_l[g] (72)
It then follows that
[6s) = [ ([6) — [217 [~ [6:]) (73)

Equation (71) then yields [d,].

Case 2: n—1>m

From the second equation (70), we have
[6:] = 12671 ([65] - [2] " [6:]) (74)

hence, from the first,

It then follows that

[5r] = [Qr]il([er] - [Q] [Qs]il[es]) (76)

Equation (74) then yields [ds].

Example 5.1. In the special case defined in Fig. 3, let
us concentrate on the column of By, corresponding to the
ambiguity variable N, [ed] (2,4). The entries of this column
relative to the reduced data <I>V7k(z j) on G are then the
corresponding values of A, (Re;u.k ¢2.4) (i,7) where ca 4 is
the ‘characteristic function’ of edge (r2, s4):

C24 = 0 0

The other entries of that column are nought. Let us then
define the values of the weight function as follows (see

Eq. (66)):

1.0 * 08 1.0
ne=| 05 04 % 1.0
« 1.0 1.0 1.0

Equations (73) and (71) then provide 6 = By j co.4:

51 =-022  §0=011  d3=-021

Sop=—002 §5=022 4= 044

The values of the ¢-reduced form of ¢y 4 for ¢ = (¢;v)
are then the following (see Eqs. (58), (48), (47), (67)
and (68)):

1 0.22 « 000 —0.22
Rk C2,4 = p —0.16 —0.15 * 0.45
o « 023 000 —023
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6 Solution of the problem: Survey

In the approach adopted in this paper, the equation (1)
or (2) relative to the problem under consideration is solved
in the LS sense, and recursively, by using the QR method
(Sect. 7). The state transitions of the global variable, in
particular those due to a change of the GNSS graph, are
examined in that framework; see Sect. 7.4.

The selected QR implementation of this Recursive Least-
Square (RLS) process is based on ‘Givens rotations’ (e.g.,
Bjorck 1996). The corresponding operations can thus be
stored in memory very easily. The efficiency of the quality-
control procedures is thereby increased; see Sect 9.

At each epoch ti, the QR approach provides, in particu-
lar, the float ambiguity v, and the Cholesky factor Ry, of
the inverse of its variance-covariance matrix. This upper-
triangular matrix is then decorrelated via the LLL algo-
rithm. As Ry, may be of large size, a particular imple-
mentation of this algorithm is proposed; see Sect. 8.2.

Once Ry, has thus been decorrelated, the integer am-
biguity solution is obtained by using classical integer-
programming techniques (see, e.g., Agrell et al. 2002).
The problem can thereby be completely solved.

7 QR implementation

As already pointed out, we first restrict ourselves to the
case where the GNSS graph G does not change in the
current run [tq,...,tx, ..., bl

The notion of QR factorization is introduced in Sect. 7.1.
We then show how to solve Eq. (2) in a recursive manner
(Sect. 7.2). The corresponding variational aspects are
presented in Sect. 7.3. We then specify how to handle the
global variable when some transition occurs (Sect. 7.4).

7.1 QR factorization

Let us consider the following general LS problem: mini-
mize, with the Euclidean norm,

|Az — y||2m (A € R™*" m >n, rank A =n)
With regard to numerical accuracy, the best way to solve

this problem is to use a method based on the QR factor-
ization of A (see, e.g., Bjorck 1996):

ol

where R € R**" is an upper triangular matrix with pos-
itive diagonal terms, and Q € R™*™ is an orthogonal
matrix: QTQ = I,,, (the identity matrix on R™). We thus

(77)

Qly
R 2
0
0 2!
A Y

Figure 5: LS solution via QR factor-
ization. The action of QT on A and y
yields the basic QR structure sketched
here: the upper-triangular matrix R
and the column matrix z. The solution
of the equation Az = y in the LS sense
is then given by Eq. (78): & = R ‘2.

have

in = 1QT(Az —y)lEm

- foal 3]s

[Az —y|

2

Rm

Setting QTy = z+ 2’ where z € R" (see Fig. 5), it follows
that
[Az —y]

2 (12 2

Zm = |Rx — 2|

The LS solution is therefore given by the relation

#=R7'z (78)
The problem can thereby be solved by back substitution.
In the case where x is confined to Z", the solution of the
problem is therefore defined as follows:

& = argmin ||R(x — 2)|
TEeL™

Indeed, Rz — z = R(z — ).

e (79)

According to Eq. (77), the QR factorization consists in
finding an operator Q' (and thereby an operator Q) such
that QTA has the block structure [R 0]T sketched in
Fig. 5. This operator is defined as a product of elemen-
tary orthogonal transformations. In the implementation
presented in this paper, the latter are Givens rotations
(see Egs. (2.3.10) to (2.3.13) in Bjorck 1996). Premul-
tiplication of A and y by such a rotation matrix affects
only rows k and ¢ of A and d. This matrix is defined so
that, for (a2 + a2) # 0,

NI &
where
a=(a; +a2)l/? (81)
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Aq B, b1
K, Ly C1
R17R2
di| do
A
dy
Ky Ly 2
L/
? cy| dy
A By b2

Figure 6: LS solution via recursive QR factoriza-
tion. The principle of the recursive QR method is
sketched here for the first two epochs: epoch 1 with
the input block matrices A1, Bi and the data col-
umn matrix b1; epoch 2 with the input block ma-
trices A2, B2 and the data column matrix b2. The
initialization process is performed in two steps: Ki,
(L1,LY), (c1,ch) are built in the first step (see text
for L)), whereas R1, (d;,d}) are built in the second.
The global float solution is then found by back substi-
tution: © = Ry'd,. The local solution is then given
by the formula @, = Kfl(cl — L19). Likewise, at the
next epoch, one first builds Ko, (Ly,L3), (ca,ch),
and then R, (dy,d3); © is then updated via the re-
lation © = Ry 'd,. The local solution at epoch 2 can
then be computed: 4y = KQ_I(CQ — Lod).

It is easy to check that the cosine and sinus values ¢ and s
are then given by the following formulas

c=ax/a s=ay/a (82)
Note that m —1 Givens rotations are required for the first
column of A, m — 2 for the second, and so on (see Fig. 5).
It is important to point out that that the action of QT
can be stored in memory as the sequence of the succes-
sive (cosine, sinus) pairs (c,s) characterizing the succes-
sive Givens rotations involved in this operation.

7.2 Recursive QR factorization
We now show how to solve, in the LS sense and recur-
sively, the equation (2) induced by the reduced equations.

Let us first consider the initialization epoch: epoch 1.
The problem is then solved in two steps (see Fig. 6).

Ry, dy,

Figure 7: Recursive QR trian-
gular structure. According to
the principle of the recursive QR
method sketched in Fig. 6, the cal-
culation of Ry and dj41 requires
to have kept in memory the upper
triangular matrix Rj and the col-
umn matrix dj (see text).

The Givens rotations of the first step are those required
for finding the upper triangular matrix K;. The modified
version of B; thus obtained includes an upper block L
and a lower block L. Likewise, the modified version of by
includes two column submatrices: ¢; and ¢j.

The Givens rotations of the second step yield the upper
triangular matrix Ri; ¢} then yields (d; ,d}); see Fig. 6.
Note that K3, Ly and c¢; are not affected by these ro-
tations. The global solution is then obtained by back
substitution via the formula © = R;'d,. The local so-
lution can then be also computed by back substitution:
’&1 = Kfl(cl — Llﬁ)

The first step of the next epoch (epoch 2) is similar to
that of epoch 1: one thus obtains the upper triangular
matrix K9. The modified version of By then includes an
upper block Ly and a lower block L. Likewise, the mod-
ified version of by includes two column submatrices: co
and ¢, (see Fig. 6). The Givens rotations of the second
step then operate on (R; , L}) and (d; ,c}) so as to trans-
form LY into a zero block matrix. One thus gets Rz and
(dy,db); © is then updated via the relation & = R;'d,.
The local solution at epoch 2 can then be computed:
’&2 = KQ_I(CQ — LQ@)

In summary, one thus operates, recursively, with the key
structure shown in Fig. 72 Kjy1, (L, L)) and
(Cry1 s c§€+1) are computed from Agy1, Biy1 and bgy1, the
quantities Ry and (d;,,,d}, ;) being then computed
from (R, , L}, ) and (d;, ¢} ,). We then have

Kiv1 Lkt Ukt 1 Cht1
. = 83
[ Ryt ] [ D dr+1 (83)

hence
=R ! d
= 10
and

“ 1 .
tgy1 = Ky 1 (ck1 — Li10)
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7.3 Variational calculation

We now answer to the following question: what are the
variations A4y and A¢ induced by a variation Aby of by
(at epoch t;)? From Eq. (2), these variations are the
u-v components at epoch t; of the LS solution of the
equation

Ay By Auy 0
A2 B2 AU,Q 0
Ak By Auk Abk
Av

By construction, the quantities Ady, ..., Adg_1 induced
by this equation are nought. The problem is therefore
the same as previously, Ad being then computed from
Ac), with Adj_y = 0. This is why it is recommended to
store in memory the sequence of the successive pairs (c, s)
characterizing the Givens operators involved in the two
QR steps of epoch t; (see Fig. 6 and Eqgs. (81) & (82)).

7.4 State transitions of the global
variable

At some epochs t;, one may be led to perform a linear
operation on the global variable v:

' = S
For example, this occurs in the following cases:

1) The components of ¥ are to be modified in a re-

versible manner; S is invertible: S = S (Sect. 7.4.1).

Note that reordering the components of ¥ comes un-
der this case.

2) Some components of ¥ are to be discarded; S is then
of the form S55; where (Sect. 7.4.2)

— 5; is a ‘reordering operator;’

— S5 is a ‘truncation operator.’

Such an operator is not invertible.

3) Some edges of the current spanning tree of Gy (the
GNSS graph at epoch ¢) are missing in Gi41. As
specified in Sect. 7.4.3, S is then of the form 5357
where

— S is an operator which changes the set of
the current CD ambiguities into another set
of such ambiguities;

— S is a truncation operator.

At epoch tp41, new entries of v may appear. For ex-
ample, this is the case when new edges appear in the
GNSS graph. How to proceed in this case is specified in
Sect. 7.4.4.

7.4.1 Reversible operations
We then have R, o = R, S;'0’ = d, , hence

R,%' =d, where R} :=R,S;"

This matrix is no longer triangular. One then performs
Givens rotations on Rj, and dj so that R}, becomes upper
triangular: R} — Ry, di — d},. One then finally sets

set 51/ set g
Rk_Rk dk_dk

7.4.2 Truncations

For example, consider the case where the components (%)
and 9 of © are to be discarded. One first performs the
permutation

r oM 7 r 53 7
(2 ()
»(3) ey
S o@ | _ | 9@
»(5) (@)
(6) (6)

The columns of Ry, are then permuted accordingly. As the
matrix thus obtained, R}, is no longer upper triangular,
one then performs Givens rotations on R}, and dj, so that
R;. becomes upper triangular: Rj,— R}, d — d}. To
complete the process, one then removes the first two lines
and first two columns of R}/, as well as the first two entries

set

of ¥/ and dj. Again, one then finally sets R, = R} and
d, = dJ.

7.4.3 Graph transitions

Let us denote by
Gr = Vi, &) Grr1 = Va1, Exr1)

the GNSS graphs at epochs t; and t;;1, respectively.
Ag illustrated in the upper and lower parts of Fig. 8,
G and G4 denote their respective grids. Let us now
set

F =& NEki1

The edges of & that do not lie in F form a set denoted
by M:

M:=& —F

Likewise, the edges of ;11 that do not lie in F form a
set denoted by N

N = 5k+1 - F
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Here, M and N stand for ‘missing edges’ and ‘new edges,’
respectively. In this section, we consider the case where
M is not empty.

The entries of 0, at epoch t; are defined with respect to
the current spanning tree of Gy: Gr.st (see Fig. 8). One
is then led to introduce another spanning tree of Gi: the
‘transition spanning tree’ Gy.s. This spanning tree is
obtained by considering the following ‘ordered partition’
of & (see Remark 4.2 and Fig. 8):

e =FUM (FAM=0)

The spanning tree of Gy 1, Giy1:st, is then built from the
following ‘ordered partition’ of 41 (see Fig. 8):

Eri1=FUN (FNN =0)
The analysis of the case where N is not empty is com-
pleted under the analysis developed in Sect. 7.4.4.

With regard to M, two cases are then to be considered:
(i) the case where M N Gy, = 0;
(ii) the case where M N Gt # 0.

In the usual case (i), the elements of M are loop-closure
edges. The components of ¢, corresponding to these
edges are then simply to be removed. The procedure de-
scribed in Sect. 7.4.2 can then be implemented directly.

In the special case (ii), this is not so simple. One must
first introduce some transition state v,;;. As specified in
the example presented further on (see Fig. 8), the entries
of 1,1 are defined with respect to the transition spanning
tree G.tst. More precisely, this state is defined by the rela-
tion 0,,1 = S10, where S; is an invertible operator defined
via the recursive differential process defined in Sect. 4.2;
Ry is then updated accordingly (see Sect. 7.4.1). This
transition operation is completed by a truncation oper-
ation in which the components of 0,,1 corresponding to
the edges of M are removed (see the procedure described
in Sect. 7.4.2).

Once all these algebraic operations have been performed,
the quantities Ry and dj, which have thus been updated,
are used to perform the recursive QR step towards Rj41
and dp11 (see Sect. 7.4.4).

Example 7.1. To illustrate these considerations in a
concrete manner, let us assume that the GNSS graph at
epoch t; is that shown in Fig. 3; its grid Gy, is shown is
the upper part of Fig. 8. The current spanning tree Gj.t
is that represented in the same figure.

As shown in the lower grid of Fig. 8, let us now assume
that at epoch tx1, satellite s; is no longer visible, and
that satellite s3 is no longer visible from receiver 1. A new
satellite, s5, is then visible from receivers ry and ro. More-
over, satellite ss is then visible from receiver 1, and satel-

S1 52 S3 S4
T1

T2

T3

S1 52 S3 S4
T1

T2

T3

S1 52 S3 S4 S5
1

T2

T3

Figure 8: Graph transition. In the example shown here, the
upper grid Gy is that of the GNSS graph at epoch t;. The
lower grid G1 is that of the GNSS graph at epoch ¢,4+1. The
grid in between is a copy of G, for describing the transition to
be performed. As illustrated here, the edges (r1,s1), (r1, s3)
and (re,s1) disappear at epoch tgy1, while four new edges
then appear: (r1,s2), (r1,8s), (r2,s3) and (r2, s5). The black
dots of the upper grid form the subgrid Gy;s; of the current
spanning tree at that epoch. Likewise, the black dots of the
second grid form the subgrid Gy;tst of the transition spanning
tree (see text). The red dots of each of these grids define
the sets of loop-closure edges involved in the transition to
be performed. The relation between the first ambiguity set
and the second is linear and invertible. The corresponding
operations can be performed by referring to the recursive
process defined in Sect. 4.2. The black dots of the lower
grid define the subgrid Gi1;s¢ of the spanning tree selected
for Gi41 (for further details see text).

lite s3 is then visible from receiver 2. We then have

F={(r1,54), (r2,52), (r2,54), (13, 52), (13, 83), (r3,54) }
M= {(r1, 1), (r1,53), (r2, 1)}
N ={(r1,52),(r1,85), (r2, 53), (r2, 85)}

The grid points of Gist, Gritst and Gy1,s¢ are shown
in Fig. 8 as black dots. The red dots correspond to the
loop-closure edges defined via the choice of these spanning
trees. The edges of Gp.tst and Gri1;st are respectively
obtained in the following orders:

(Tlv S4)a (T2a 52)7 (T27 S4)a (T37 SQ); (T3a 53); (Tla 51)
(7“17 54), (7“2, 82)7 (7“27 54), (7“37 52), (7“3, 33); (7“1, 85)
The entries of ¥, at epoch ¢, are then the float CD am-
biguities (see the upper grid of Fig. 8)
NE(2,4), NFU3,3), NEU(3,4)

The entries of 7,,; at epoch t;, are then the float CD am-
biguities (see the second grid of Fig. 8)

“U,3), NEd2,1), N3, 4)

v
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To define this state transition, i.e., to define, explicitly,
the operator S; involved in the relation 0,1 = S10,, we
are then led to consider the function 9 = ,LCd}. Note that

we then have
9(1,1) = 0; 9(1,3) =0; 9(1,4) = 0;
9(2,1) =0; 9(2,2) =0; 9(2,4) = NFY(2, 4);
9(3,2) = 0; 9(3,3) = NFY(3,3); 0(3,4) = NFY(3,4)

Conducted on grid Gist with Y] (2) = 0, and applied
to this function, the recursive differential process defined
Sect. 4.2 then yields, successively,

I (2) = 9(2,2) —9F(2) =0

9Bl (4) = 9(2,4) — 911 (2) = NI (2,4)
I (3) = 9(3,2) —vF(2) =0

9B1(3) = 9(3,3) — 9I1(3) = N9 (3, 3)
O(1) = 9(1,4) — 91(4) = —NEY(2,4)
OB(1) = 9(1,1) — 9 (1) = MY (2,4)

N (2,1) = 9(2,1) - () + 9 (1))
= N2, 4)

NE(3,4) = 9(3,4) — [91(3) + 91 (4)]
= NFU(3,4) — NFY(2,4)

The operator S involved in this reversible transition is
thus explicitly defined; see Sect. 7.4.1. Note that its ma-
trix and its inverse can be obtained via elementary al-
gebraic computations. The ambiguities NE;”(LS) and
Nl[,f‘f] (2,1) are then discarded; see Sect. 7.4.2.

7.4.4 Handling additional components

From time to time, some new entries of v are to be in-
troduced. For example, in the graph transition of Fig. 8,
the following entries of v, must be taken into account:

N(1,2), NE(2,3), N2, 5)

The first columns of By41 are then processed as the last
columns of Axy; (see Fig. 6). To get Riy1 and dgy1, one
then proceeds as illustrated in Fig. 9.

This pointed out, when such a transition occurs, one may
be led to reorder the components of v; see for instance
Eq. (42). One then proceeds as specified in Sect. 7.4.1.

Ry

Figure 9: Handling additional entries of
the global variable. When new entries of v
appear at epoch tyi1, the first columns
of By11 are processed as the last columns
of Ax41 (see Fig. 6). The recursive QR op-
eration then yields the quantities K, L, c,
R and d. To get Ri4+1 and dgy1, one then
proceeds as illustrated here.

8 Integer-ambiguity resolution

At each epoch, the QR approach provides, in particular,
the float solution ¢ and the Cholesky factor Ry of the
inverse of its variance-covariance matrix. We then have
Ry o = dj, (see Sect. 7.2), i.e., from Eq. (42),

b di:b
E

The ambiguity solution is then defined by the relation
(see Eq. (79))

Risy  Riba
0 Ri;a

Uy = argmin || Ri.a(va — a) ||2na (85)
vy EZLNa
where n, is the number of entries of 0,. When in the
data assimilation process, v, becomes consistent with the
model (up to the noise), the ambiguities are said to be
fixed. The estimate of the float component of the global
variable is then refined accordingly (see Eq. (84)):

vp = Rl;%) (dk;b - Rk;ba"}a) (86)

The local variable 4y is then refined via a FLS (Fixed
Least-Squares) process, i.e., a process in which the ambi-
guities are fixed. Again, the QR method is well suited to
solving this problem.

The remainder of this section is devoted to the search of
the integer ambiguity solution. For clarity, subscripts ‘k’
and ‘a’ are then omitted. Equation (85), for instance, is
then simply read as follows:

O = argmin || R(v — 0)||3a (87)
vEL"

This nearest-lattice-point problem is solved in two steps
(see, e.g., Agrell et al. 2002). One first searches a ‘re-
duced basis’ of Z" in which the matrix of RT R is as diag-
onal as possible. The problem is then solved in this basis
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by using the corresponding ‘reduced form’ of R: R; the
integer-valued solution ¥ thus obtained is then expressed
in the original basis: v — .

The first step corresponds to a decorrelation process. The
decorrelation methods to be implemented must somehow
refer to the principles of the LLL algorithm (an algorithm
devised by Lenstra, Lenstra and Lovasz in 1982). In the
case of GNSS networks, as R may be of large size, partic-
ular implementations of this algorithm are to be devised.

For the particular methods presented in this section, the
entries of v are lumped together in m receiver blocks v;:

U1

L Um

The receiver blocks are of the form

[Vledl].
1,1
v = [N[Ccﬂ]m (89)
[N[Cd]] )
i,V3
For example, at epoch ¢, of Fig. 8, we have
T
[N = [ N1, ] (90)

where j spans the subset of £;;; defined by the loop-
closure points of line i + 1; see Eq. (51). We then have
m=m-—1=2.

The number of entries of v; is denoted by n;. For example,
with three carrier waves on a full network (see Fig. 2), we
haven, =3(n—1) fori=1,...,m with m = m — 1. Note
that

A= n o

The structure of R induced by that of v includes m ver-
tical bands of the form

Ty

Si
T;
B1 = 0 Bl = 0

(fori>1)  (92)

Here, T} is an upper-triangular matrix with n; positive
diagonal elements; S; is a rectangular matrix with p; lines
and n; columns:

As specified in Sect. 8.1, the search for a reduced basis
can be initialized via some inter-frequency decorrelation
process. For each loop-closure point (i, ) of £;, the vari-
ables N9 (i,7), N (i,4), Nid (i,4) can thus be decor-
related. It is important to note that this process performs
an operation basically similar to that of the widelane and
extra-widelane techniques (see e.g., Feng and Li 2008,
Teunissen 1997). This pointed out, by proceeding in this
way for each T;, one benefits from the correlation infor-
mation concerning these variables at the current epoch.

It is however preferable to perform, directly, what we
call ‘LLL band decorrelation’ (Sect. 8.2). This pointed
out, once this weakened implementation of the LLL al-
gorithm has been performed, the size of the search el-
lipsoid must generally be reduced. This is done via the
‘blockwise-bootstrapping’ method described in Sect. 8.3.
The integer-ambiguity solution can then be obtained and
validated via standard integer-programming techniques
(Agrell et al. 2002).

8.1 Inter-frequency decorrelation

With regard to the frequency-block structure of v; (see
Eqgs. (89) and (90)), the matrix elements of 7; relative
to the same loop-closure point are then distributed as
follows:

tl’l V1 tl’l V2 tl’l V3
tV2,l/2 tV2,l/3 (94)
tl/z,vs

By performing appropriate operations on R (see, e.g., Luk
and Tracy 2008), the following conditions can easily be
imposed:

EVlng > 2|I1/1g1/2| EVlng > 2|IV17V3|

} _ (95)
t1/2,1/2 > 2|tV27V3|

Note that in this process, the diagonal elements are not
modified: t,, = t,,,. For each receiver block (of index i),
these operations are performed for each set of the three
entries to be considered. The upper-triangular matrix R
thus obtained is equal to RZ where Z is a unimodular
matrix. (By definition, a unimodular matrix is an integer
matrix whose inverse is also an integer matrix.) We then
have Rv = Rv where © = Z~'v. The entries of v are
the components of the integer-ambiguity vector in the re-
duced basis thus defined. This process also provides Z~!.

8.2 LLL band decorrelation

The guiding idea of the decorrelation process presented
in this section is to perform complete LLL decorrela-
tions of the successive triangular blocks 77,75, . ..., Ty-
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The matrix elements of the blocks T; and S; of the decor-
related bands B; thus obtained are respectively denoted
by fik’e and Eiq’e (see Eq. (92)). The diagonal elements
of R are then denoted by #99. For i > 1, we thus have
fik’k = FPithpith for 1 < k < n,.

The band decorrelation in question is a simple extension
of the ‘new implementation’ of the LLL algorithm pro-
posed by Luk and Tracy (2008). For clarity, we set

2
rkk+1
£ +

R
£

K2

ph = (1<k<ny) (96)

The following conditions, with 1/4 < w < 1, can then be
imposed:

Forbandi=1,...,m
{
If i > 1, then

forg=pipi—1,...,1 fq7q>2|§iq,1|

For column £ =2,...,n; of B;
{
it < 1/4
[ = (- ) [F 1
If £ > 2, then

fork=¢—-2,¢0-3,...,1

Forq:piapif]-a"'a]-
}
}

In fact, for optimal decorrelation, w is set equal to 0.999.

tr > olel|

7o > 2|50

This procedure provides R as the product QRZ, in which
@ is an orthogonal matrix, and Z is a unimodular matrix.
We then have

| Rol|%n = || R||Zn (97)
where
=21 (98)

The entries of ¥ are the components of the ambiguity vec-
tor in the reduced basis thus defined; Z ! is progressively
built through the process (together with Z). It follows
that

[R(v—0)[[gn = [|1R(D — )| (99)
where
0:=2"%

(100)

In the absence of any prior information, the search ellip-
soid (the ellipsoid in which the solution is to be searched)
is then defined by the relation

Eo:={v:|R(©—0)||zn < €0} (101)

where

€= |R@ —0)|3. with 7 .= [0 ] (102)
Here, WJ denotes the column matrix whose entries are
the nearest integers to the corresponding entries of 0. Be-
fore solving the nearest-lattice point problem in the re-
duced basis, one may be led to reduce the size of the
search ellipsoid. The blockwise-bootstrapping technique
described below can then be implemented.

8.3 Blockwise bootstrapping

The procedure presented in this section provides a finite
sequence of integer-ambiguity vectors (9 such that

€gr1 < €; where ¢, :=|R(@Y —0)|3. (103)
The ellipsoids
Eg:={v:|R[©—0)|]3n < €} (104)

therefore satisfy the property Eq C --- C E; C Eg where
gr is some finite integer.

To define this procedure, let us consider the quadratic
functional (see Eqgs. (99), (92) and (88))

6(617"'761';"'76111) = ||R(1_) 76)”]21%"
W - s (105)
= HZz’:l B;(v; — Ui)| R
From Eq. (102), we have e(ﬂ%o),...,ﬁfo),...,ﬁr(\?)) = €.

The principle of this procedure is then the following. For
example, we first

minimize 6(1_)§O), cee 171(11011, Uy) in Ty (106)

The minimum is attained for some ’D,(T}) € Z*. (How to
do that is specified at the end of this section.) We then

_(0 _(0 _ _(1
'U§ )a---avr(le?Um—l?Ur(n)

minimize € ) in U4 (107)

The minimum is attained for some 171(“111 in Z"-1. We
proceed like that until the first block variable included.
We have thus found an ‘integer-ambiguity point’
oM = @M, M e
for which € = €; with ¢; < ¢g. If €1 = €, the process is
interrupted. Otherwise, we then
minimize 6(’179), O ) in Uy

(108)

» Ym—17 ¥m

and so on until the process is interrupted.

We now specify how to perform the internal minimiza-
tions of type (106), (107) and (108). For example, with



Lannes and Gratton: GNSS networks in algebraic graph theory 69

regard to problem (106), we have, from Eq. (105),

@, 00 o)

m—1 2
et m60 -,
=1

m—1 2
= [[Bwm = [Buin = >_ Bl = 5)] |,

The problem of minimizing this quantity in @y, is solved
in two steps: we first find its float solution by QR fac-
torization; see Sect. 7.1. In the current reduced basis, we
then solve the remaining problem of type (79); see Agrell
et al. (2002). Note that for each 4, the action of the oper-
ator QT involved in the first corresponding QR operation
is to be stored in memory (see Sect. 7.1).

9 DIA methods

To prevent that biases on the undifferential data prop-
agate undetected into the ambiguity solution, particu-
lar methods have been developed. The biases are first
‘Detected,” then ‘Identified,” and finally the results are
‘Adapted’ consequently (e.g., Teunissen 1990, Hewitson
et al. 2004, Lannes and Gratton 2008). The identifica-
tion principle of the DTA method presented in this section
is ‘local:’ the biases are identified epoch by epoch. The
corresponding analysis is based on the results provided by
the QR process at the current epoch. When the ambigu-
ities are not fixed, the adaptation principle is global: the
local variables, the current biases, the current float ambi-
guities and the current QR triangular structure (sketched
in Fig. 7) are updated in the global frame of the RLS pro-
cess, without any approximation.

9.1 Quality control

Let us set (see Eqgs. (45) and (46))
O = Uy — (A i + By 0)
and
B, 1= orgmin 16 — 213«

When the model defined by Eqs (43) and (66) holds, on
each point of G, |t§w7f€ — ¢, | is then less than a few
oy+/1, say less than xy0y,/n where x is of the order of 3
for example; for further details on the choice of x,, see
Sect. 9.5. But, from Eqs. (48) and (47),

9'4!),/{ - (123'401;,/{ = rpiL,kéw,n
As a result (see Eq. (58)), the absolute value of

Ry k0y.r = Up Py sy e

is then less than x, on G; see Eq. (67). Taking account
of Egs. (61) and (62), we are thus led to concentrate on
the quantity

Wy = Ry = UF . — (AL, i + BE,,0) (109)
If for ¢ = (¢;v), (p; v) and for each v, |wy k| is less than y,
all over G, we therefore consider that the model can be
accepted as it is. Note that by construction, wy x is the
1-component of the local residual

= b, — (Art By
Wi k — (Aptig + Bgd) (110)
= Hpby,

where Hy, is a linear operator (see Sect. 7).

For clarity, we now omit the time subscript k. In this
context, to control the validity of the model, we consider
the quantity

|W|max := max w;l(g;) max_|wy (i, 7)] (111)

v y=(¢w) (4,5)€EG

If |w|max is larger than x,, the model is to be refined. For
some 9’s and some (4, j)’s to be identified, we then search
to estimate additive biases By (i,j). More precisely, the
algebraic definition of these biases is such that the orginal
data Wy (i, j) should then be corrected as follows:

\11111(17])2\1]%0(2;.7)*61&(17]) (112)
According to Egs. (49) and (45), §* and thereby w,, are
invariant under any variation of V¥, in the vertex-delay
space I'; see Fig. 4. As a result, to handle the identifi-

cation problem in question, a preliminary notion is to be
introduced: the notion of ‘identifiable bias.’

9.2 Identifiable biases

A unity bias on some receiver-satellite signal (i, j) is
defined by the characteristic function ¢; ; of edge (7, s;):

cosli ) = { ;o) =) (113)

0 otherwise

Let us now consider two ‘signed unity biases’ on ¢ having
the same closure delays. As these biases are equal up to
a vector of I, their reduced forms are identical. As a re-
sult, they cannot be distinguished. The following analysis
clarifies this point explicitly.

The values of cgff] on the loop-closure points of G form
a vector cgf;-i] including n. components. As the closure

delays are algebraic sums of SD’s (see Remark 4.4), these
components are equal to +1 or zero. The simplest way
to determine them is to use the recursive differential pro-
cess defined in Sect. 4.2. For our present purposes, we

say that the one-dimensional subspace generated by cgf;ﬂ
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defines a ‘bias direction’ d in El°4. As two distinct edges
may define the same bias direction, the number of identi-
fiable biases is less than or equal to the number of edges:
ng < ne. For example, in the case of the graph defined
in Fig. 3, nq is equal to 6; the vectors d; are then the
following;:

d1 d2 d3 d4 d5 d6

1 0 0 1 -1 0
0 1 0 1 0 1
0 0 1 1 -1 1

They are obtained in this order by spanning, first the
n. loop-closure points of G, and then the points of Gg;.
By construction, we thus have (see Eq. (32))

Ne < ng < Ne (114)
Denoting by G, the set of points of G whose bias direc-
tion is equal to d;, we then say that [ J,2, Gy is the ‘bias
partition’ of G. For example, in the special case of Fig. 3,
we have

Gi={(24)}  G2={(,3);(1,3)} Gz ={(3,4)}
Ga={(1,1);(2,1)} Gs={(1,4)} Ge=1{(2,2);(3,2)}

The first element of G, is denoted by e;,. Here for ex-
ample, e; = (3,3); e stands for edge. Whenever G; in-
cludes two grid points, the latter are of the form (4, 7)
and (i',j). Furthermore, we then have cgf;l] =d, and

Eff;] = —dy. An identifiable bias is thus associated either
with a receiver-satellite signal, or with a single difference.
When m = 2, each bias is associated with a single differ-
ence. The number of identifiable biases is then equal to n:
ng = n; see Lannes and Gratton (2008). Conversely, in
the case where the GNSS graphs are full or almost full
with m > 2, nq proves to be equal to n,.

9.3 Identification principle

When the model is to be refined, we search to identify ad-
ditive biases of the form 3, (see Sect. 9.1); here, £, char-
acterizes the corresponding ‘outlier:” an outlier with di-
rection dy on the data vector 1. The outliers £, form a
set to be identified: the ‘outlier set’ O.

According to Egs. (110), (65) and (62), the variation of w
induced by the unity bias c., on % is characterized by the
quantity

Je, =H (115)

As a result, the variation of w induced by the global bias

0
zi= Y By | [ee] (116)
EweO 0
is characterized by the vector
Mz:= Y B, fe, (117)
Eq,eo

More precisely, from Eq. (112), w should then be cor-
rected as follows: w=w — Mz. The problem is therefore
to solve, in the LS sense, the equation w — Mz‘="0, in
which the column vectors of M, the fy,’s, are to be thor-
oughly selected. As clarified in Sect. 9.5, this operation is
performed via a particular Gram-Schmidt orthogonaliza-
tion process which is interrupted as soon as the corrected
data are consistent with the model.

9.4 Global adaptation

Once the outlier set O has been identified, the model is
to be updated consequently: Ay is completed by adding
the columns associated with the corresponding bias vari-
ables (3. These column matrices have the following
block form (see Eqgs. (112), (65) and (62)):

0
[che[}
0

(118)

The global QR recursive process is then updated accord-
ingly. The local variable, the biases and the float ambi-
guities are thus refined, as well as Ry and di in partic-
ular (see Fig. 6). When the QR process is initialized, or
when the ambiguities are fixed, the biases provided by
the adaptation process coincide with those provided by
the identification procedure (see Sect. 9.3 and step 2.5 in
Sect. 9.5). The LS problem to be solved, which is then
the same, is simply handled in a different manner.

9.5 Implementation

In the procedure described in this section, the outliers £,
are identified progressively; see the flow diagram shown in
Fig. 10. At the beginning of this procedure, O is therefore
empty. For each 1, we then introduce the set

Ky ={:1<0<nq} (119)
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Setting (see Sect. 9.2)

Cpi= max_ wy(i,) (120)
(4,5)€G.
we then consider the quantity
Chax := max wr:n(fg;g) max Cy ¢ (121)

v p=(dw) LEKy

At the beginning of the procedure, we therefore have
Cmax = |UJ|maX; see Eq (111)

Given some probability of false alarm 6y, the threshold
parameter y, may be defined as the upper 6y/2 probabil-
ity point of the central normal distribution:

Xo = NQO/Q(O, ].)

For example, when 6 is equal to 0.001, yx, is of the order
of 3.

This threshold parameter may also be defined, heuristi-
cally, as a given multiple of the mean value of |wy (3, j)]
on G for all .

1. Entrance test on Cpax

When Chax is smaller than x,, the model is accepted as
it is: no outlier is to be searched; one then goes to step 4.
Conversely, if Cpax is very large compared to x, (say
larger than 1000 for example), the QR process is reinitial-
ized (see Sect. 7). In the other cases, the DIA procedure
is initialized by setting v = 1 and II = ); ¢ is a recursive
index; the meaning of the auxillary set II is defined in
step 2.2 as soon as it begins to be built. At this stage,
the ‘local redundancy’ of the problem, Lr, has a given
value.

2. Recursive identification of the outliers

2.1. Current set of potential outliers

Given some nonnegative constant x < 1, form the current
set of potential outliers

Y=(p;v)

II, := U U {&/, : &/, S ICw, C¢,e > "‘@Cmax}
v =(dv)

2.2. For each potential outlier £, € Il
Perform the following successive operations:

a) When £, ¢ II, compute fy,; to do that, see the context
of Egs. (115), (110) and Sect. 7.3. Then, set

o [ )
ge, = fe, HD&{ v

IMu{¢,} otherwise

ifII=0

By construction, II is the set of potential outliers £y,
for which f,, has already been computed.
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B QR solution

B Local residual w T

l Entrance test
on Cmax

—

1 Reinitialization

l Potential outliers
T B Identified outlier
B Identified biases
B Update redundancy

B Update w

-~ Inner test
on Cmax

B Global adaptation

Figure 10: Flow diagram of the DIA procedure. This
procedure is based on an examination of the local resid-
ual w. This residual, with components wy (i, ), is the ob-
servational residual simply divided by the standard devia-
tion oy+/7(%, j) of the original data; see the introduction of
Eq. (109). At each step of the identification process, the up-
dated values of w are analyzed on the grounds of Egs. (121)
and (120); see steps 1, 2.7 and 2.8. This allows the po-
tential outliers to be selected. The outliers can thus be
identified, in a recursive manner, via a particular orthogo-
nalization Gram-Schmidt process. This QR Gram-Schmidt
process also provides the idenfiable biases (see Sect. 9.2),
and thereby the cycle slips if any. When the ambiguity are
not fixed, these biases are slightly refined through the global
adaptation process described in Sect. 9.4.

b) If t = 1 go to step 2.2¢. Otherwise, at this level,
{95 }q<r is an orthonormal set. (This set is built, pro-
gressively, via step 2.3.) Then, for each integer q < ,
consider the inner product defined as follows:

Sty = (9q - 90,) = 951 g0,

If ¢4,¢,, has not been computed yet, compute it, store
it in memory, and perform the Gram-Schmidt orthog-
onalization operation

set
g@w = g@w - gq,Zu) g;
By construction,
[e]
Sq,ly = (gq 'ffw)

At the end of all these operations, gy, is orthogonal
to gq for any q <.
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¢) Consider the projection of w on the one-dimensional
space generated by gy, i.e.,

(hzw . w)hgw

hfw = géw/ |g€z/;

where ||g¢, [|? = [g¢,]"[g¢,]- The norm of this projec-
tion is equal to [(he, - w)|, the absolute value of the
quantity

Ve = (géw 'w)/gew 0ty 1= ngw”

2.3. Identified outlier

The identified outlier £;,. is defined as the dominant po-
tential outlier, i.e., the potential outlier for which |y, | is
maximal:

£y« := arg max |y, |
£y €Tl

We then discard £}, from KCy»: Ky- =Ky — {€.}. We
then set

ot {oc}
op =102, 0=
OU {o:}

ift=1

ife>1

o

Ye = Yoo 9o = go./ 0o,

Here, o stands for outlier. At this level, O is the current
set of identified outliers:

0= {Oq};:1
By construction, {gfl q=1 18 an orthonormal basis of the

current range of M; Z;zl Yq9q is the projection of w on
this space. With regard to Eq. (117), we then set

Be = Po. f2 = fo.

2.4. Components of g7 in the basis of the fJ’s

These components are denoted by uq..:

T
o o
g = § uq,:fq
q=1

They are computed via the following QR Gram-Schmidt
formulas (see, e.g., Bjorck 1996):

1 .
- Z Ug,q' Sqroe g <t
Qoc q<qr<e
Ug,r =
1 .
ifg=r
ro

th

for 1 < g <t. The ug,.’s are the entries of the t"* column

of an upper triangular matrix U.

2.5. Identified biases

According to Eq. (117), the biases (7 are the components
of Z;Zl Y594 in the basis of the fJ’s:

v v
PIRHED DA
q=1 q=1

Denoting by [7°] the column matrix with entries v (from
q = 1 to t), and likewise for [3°], we have [3°] = U[y°].
The identified biases are therefore to be updated as fol-
lows:

Ot{ By +ugeyy ifg<r

y = i . (for 1<g<r)
U, Ve ifg=r

2.6. Update the local redundancy
Lr=Lr—1

If Lr = 0 go to step 4.

2.7. Update w

W= - ag;
2.8. Update Ciax

P=(p;v)
Cmax := max max max Cy.g
v yY=(¢v) LeELy

2.9. Inner test on Cpax

If Conax > X0, update the recursive index: v = v4-1. Then,
go to step 2.1.

3. Global adaptation

Update the global QR recursive process by taking account
of the identified bias variables (see Sect. 9.4).

4. End

10 Concluding comments

The GNSS centralized approach presented in Lannes and
Gratton (2008) was restricted to the case of RTK ob-
servations with a single baseline of local scale. That
approach was validated by processing real GPS data in
dual-frequency mode. The present paper was devoted to
the extension of that contribution to the general case of
multiple-baseline networks of any scale. (The extended
satellite-clock biases are not estimated.)

To introduce the reader to the related concepts, we first
examined the special case where the GNSS graph is full:
all the receiver-satellite signals of the GNSS network are
then available; see Sect. 3.1. The carrier-phase integer
ambiguity vector can then be decomposed into three in-
teger ambiguity components: the receiver, the satellite
and the DD ambiguity vectors; see Eq. (23).
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The heart of the paper concerned the extension of this
property to the general case where the GNSS graph is not
full. This was done in Sect. 4 with the aid of elementary
notions of algebraic graph theory. From a technical point
of view, the algebraic operations performed on the edges
of the GNSS graph are to be followed on the correspond-
ing GNSS grid; see Fig. 1. In this framework, as clarified
in Sect. 4.2, the notion of closure delay generalizes that
of double difference. In practice, according to their def-
inition (Eq. (37)), the closure delays are computed via
the recursive differential process defined in Sect. 4.2; see
Example 4.3. This pointed out, a closure delay is an al-
gebraic sum of single differences; see the example given
in Remark 4.4. This shows that generalization does nec-
essarily make the problems more complex. Instead, it
provides a theoretical framework which leads to a better
understanding of the matter, and thereby to more effi-
cient techniques.

As specified in Sects. 5 and 6, the problem is stated and
solved in terms of reduced quantities. The notion of re-
duction is closely related to that of centralization. This
operation simply amounts to solving a linear system, the
size of which is at most equal to the number of satellites
other than the reference satellite; see Eqs. (73) and (72).

In the approach adopted in this paper, the float solution is
refined, recursively, by using the QR method; see Sect. 7.
The state transitions of the global variable, in particular
those due to a change of the GNSS graph, have been
examined in this framework. The example studied in
Sect. 7.4.3 concerns complex circumstances. The notion
of transition spanning tree is then essential for solving the
problem in an elegant and efficient manner; see Fig. 8.

At each epoch, the QR method provides, in particular,
the float ambiguity solution and the Cholesky factor of
the inverse of its variance-covariance matrix. To solve
the corresponding integer-ambiguity problem, this upper-
triangular matrix is to be decorrelated. As the size of this
matrix may be very large, a particular implementation of
the LLL algorithm was proposed; see Sect. 8.2.

As shown in Sect. 9, the centralized mode is particularly
well suited to the QR implementation of the DIA meth-
ods. On each edge of the GNSS graph, or equivalently,
on each point of the corresponding grid, the observational
residual is then simply divided by the standard deviation
of the corresponding data; see the context of Eq. (109).
The search for the potential outliers is then performed by
simple inspection of the absolute value of these reduced
quantities; see Egs. (121), (120) and step 2.8 in Sect. 9.5.
The statistical tests are thereby very simple; see steps 1
and 2.9 in Sect. 9.5. This pointed out, when some data
are missing, the notion of identifiable bias is to be taken
into account; see Sect. 9.2.

The operations involved in the selected QR implementa-
tion can be stored in memory very easily; see Sect. 7.3.
As a result, the variational calculations involved in the

DIA methods can be performed in a very efficient man-
ner; see step 2.2 in Sect. 9.5. Furthermore, the QR global
adaptation step of the DTA method nicely completes the
QR Gram-Schmidt step 2.4 of the local identification pro-
cess described in Sect. 9.5. The identifiable biases, among
which the cycles slips (if any), are thus estimated in two
different ways; see Lannes and Gratton (2008).
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