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Abstract 
 
Many smart devices like smart phone and tablet 
nowadays are featured for hybrid sensor platform of GPS 
chip, inertial sensor(s), magnetic compass and other 
gadgets such as camera and Wi-Fi. The interest to apply 
those smart devices for indoor navigation is growing 
since a large variety of sensors on such devices enable 
hybrid location solutions to not only improve the 
availability of indoor positioning but also the accuracy 
and smoothness. However, in deep indoor scenario, the 
positioning accuracy is still seldom satisfactory due to 
large accumulative errors of dead-reckoning sensors. In 
this paper, a floor plan based vision navigation method is 
designed for pedestrian handset indoor application. The 
floor plan for buildings is an easily accessible indoor 
map with detailed path and room information. It can be 
matched with the vision measurements from the camera 
sensor to derive accurate and drift-free positions even in 
deep indoor environments. The Random Sample 
Consensus (RANSAC) algorithm is adopted for robust 
matching between floor plan and camera photo. An 
iPhone Demo App is developed to evaluate the 
performance of the designed system and the test results 
indicate meter-level horizontal accuracy. 
 
Keywords: < Indoor, Vision Navigation, Floor Plan > 
_____________________________________________ 
 
1. Introduction 
 
The iPhone raw measurement of user locations is a 
hybrid result of GPS, cellular and Wi-Fi network. The 
basic scheme of assisted GPS (AGPS) is employed so 
that, on the one hand, the cellular and Wi-Fi network 
based position assists the GPS chip to lock on more 
satellites in shorter time period; and on the another hand, 
once GPS is warmed up, the network positioning 
performance is improved. Although the iPhone’s hybrid 
location can be better than AGPS since signal strengths 
are leveraged and weighted to provide GPS/cellular/Wi-
Fi integrated position, its positioning accuracy is seldom 
satisfactory particularly in deep indoor environments. 
We take the former built-in navigation App Google Map 

as an example. For indoor scenarios, such as looking for 
a store in a shopping mall, negative reviews on Google 
Map from users are overwhelming and mainly attributed 
to two problems: 1) Google does not contain any indoor 
map with path and store details; 2) the hybrid location 
accuracy is too poor inside building. Although the 
iPhone’s original position service partner Skyhook 
claims that the hybrid location accuracy is 10 m, the 
actual network-only position errors could be up to 200 m 
in deep indoor environments since GPS signal is almost 
totally unavailable. For the first problem, thousands of 
iPhone Apps focusing on indoor navigation have tried to 
improve their products with detailed floor plan of major 
shopping mall, airport and other public places. A floor 
plan that is available for every building is a ubiquitous 
and widely accessible indoor map. With partners’ floor 
plan, navigation App can be enforced with detailed 
inside view along with their real scales. 
 
For the second problem, current navigation Apps still 
rely on hybrid location despite that its indoor accuracy is 
poor at tens of meters. Consequently, with such big 
uncertainty, iPhone becomes not sensitive to user’s 
movement and cannot tell if the user has arrived at a 
turning point or not. Currently, in addition to using floor 
plans, a few companies have realized the importance of 
refining the hybrid location accuracy to develop multi-
sensor fusion platform. The accelerometer, gyro and 
magnetic compass in iPhone are based on MEMS 
technology and these low-cost sensors are implemented 
with dead-reckoning algorithms to improve the 
smoothness and accuracy of the position solutions. 
However, accumulative error is a significant challenge 
for these MEMS sensors, especially in deep indoor 
environment where no absolute position from GPS is 
available to limit the error drifts.  
 
Unlike relative movement measurements from MEMS 
sensors, iPhone camera can provide absolute position 
information to avoid the unconstraint growth of error 
drifts. A successful example is a vision-based navigation 
system with geo-tagged photos database developed by 
Yuan et al (2011). In their system, the camera position 
and orientation is retrieved by matching a cloud of 
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feature points in photos that are tagged with accurate 
geographic information. The obtainable accuracy can be 
as good as 1 m. Despite of the simplicity and good 
accuracy of this approach, constructing a geo-reference 
database involves lots of field survey work, which makes 
this special photo database not ubiquitous as the floor 
plan.  
 
The vision-based system is still inspiring because the 
floor plan database has the potential to be integrated with 
camera to retrieve camera position. We have investigated 
the integration scheme of camera photo and geo-
reference database and we found that the floor plan is 
able to provide sufficient 3D geo-reference information. 
A passive ranging algorithm proposed by Hung et al 
(1985) has demonstrated that if a quadrangle pattern 
formed by four features is given with its true scale, their 
2D locations on photo can be used to derive their ranges 
to camera, therefore 2D photo features can be 
reconstructed to a 3D world. A floor plan contains the 
true scale of a building and perfectly meets our need. 
Now, we are very close to the goal of retrieving 3D 
position from 2D photo and floor plan, though the direct 
output of the passive ranging is still the feature ranges to 
the camera. In order to obtain more interpretable 
navigation solution, we expect outputs about the camera 
position and orientation. From feature ranges to camera 
pose, the computer vision community has defined it as 
“Perspective N Points” problem, and a close form 
solution has been demonstrated in Horn et al (1988).  
 
In this paper, a novel indoor navigation method is 
proposed. Our goal is that on the basis of an initial 
hybrid location, by matching a user’s single shot of 
hallway with a floor plan database, the user will receive 
an absolute position with improved accuracy. In order to 
demonstrate the feasibility and accuracy, indoor tests 
were conducted with an iPhone Demo App developed at 
The University of Calgary. Integrated with camera 
photo, the floor plan is found able to not only 
significantly improve the hybrid location accuracy from 
74 m to 2.8 m on average, but also provide user an 
innovative navigation experience and augmented 
navigation reality. 
 
2. System Design 
 
2.1 Definition of frames  
Shown in Fig. 1 are three frames used in the proposed 
system and their definitions are described below: a) 
Camera frame: this is the camera body frame with 
respect to origin at camera perspective center (red axes); 
b) Image frame: a 2D frame of camera imaging plane 
(blue axes); c) Floor plan frame: a local origin is chosen 
on the floor plan, with X axis defined along the hallway, 
Y axis in the traverse direction, and Z axis pointing up. 
This frame is also referred as navigation frame. 

 

 
Figure 1: Image frame (blue); Camera frame (red) or 

body frame; Floor plan frame (green). 
 
2.2 System overview  
Shown in Fig. 2 is an overview of the proposed system. 
The only equipment required at the user-end is an iPhone 
camera. The indoor scenario is expected to have open 
Wi-Fi access. Since the processor of most smart devices 
nowadays is extremely powerful, the main navigation 
algorithm can probably be carried out at the user end 
efficiently. To simplify the software development effort, 
in our current prototype design, a remote server has been 
set up to support the main navigation calculations 
whereas the iPhone is merely used to upload the required 
inputs of the initial hybrid location, accuracy and indoor 
photo, and to download the expected resources of floor 
plan and refined position results. The server will conduct 
the following two tasks:  
• Execute the main navigation algorithm; 
• FTP service allowing user to upload required inputs 

for the main navigation algorithm and download 
floor plan resource and results feedback. 

 

 
Figure 2: System overview 

 
2.3 Main navigation algorithm structure 
Shown in Fig. 3 is the structure of the main navigation 
algorithm to be executed by the remote server, which 
consists of the following five components: 
• iPhone’s raw measurements of initial hybrid location 

and accuracy; 
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•  Floor plan database: to centre the floor plan around 
the initial hybrid location and determine the region 
of interest by referring to the current accuracy level; 
and to generate the floor plan database in the region 
of interest, which contains all floor plan features 
with their real scales; 

• Feature detection: an indoor photo is first captured 
by iPhone camera and the feature detection 
algorithm is applied to extract photo features, 
specifically the hallway features which can be found 
correspondence in the floor plan, for example, the 
corner of walls and doorways; 

• Robust matching: with outputs from the previous 
two steps, the Random Sample Consensus 
(RANSAC) algorithm is applied to match photo 
features with the floor plan database, and to identify 
reliable photo-to-floor plan correspondences; 

• Camera position and orientation determination: first 
implement a passive raging method and then retrieve 
camera position and orientation. The detailed 
mathematical derivations of these two steps will be 
described in the following. 

 

 
Figure 3: Structure of the main algorithm 

 
2.4 Passive ranging 
An iPhone camera follows the projective imaging rules. 
When a feature in a 3D world is projected and scaled 
down to a 2D planar imaging sensor, the scale 
information is lost, which directly leads to an unknown 
range between the feature and camera. Hung et al (1985) 
provided a solution, known as “passive ranging” method, 
to solve the unknown range, hence to reconstruct the 
feature from a 2D monocular image to a 3D space. In 
their paper, four coplanar features consisting quadrangle 
pattern are needed: if the shape of the quadrangle is 
constrained by their coplanar relationship, the possible 
3D positions of these four features can be narrowed 

down to a series of similar quadrangles’ vertices; 
additionally, if one side length is known which can be 
applied to fix the size of the quadrangle, the features’ 
positions can then be uniquely determined. We extend 
the minimum four feature points required for passive 
ranging to a more general case where more than four 
features are available. Two types of constraints, namely 
coplanar and length are needed for passive ranging. To 
be specific for our case, the length constraints are easily 
obtainable by referring to the true scales from the floor 
plan, while the coplanar constraints are obtainable from 
hallway parallelism. 
 
The following derivation provides details of how to 
implement the passive ranging. Each photo feature 
determines a line of sight (LOS) as shown in Eq. (1), and 
the feature 3D position must locate along the 
corresponding LOS with a unique scale, as shown in Eq. 
(2). These scales form the vector of unknowns in Eq. (3) 
and the passive ranging aim to derive a unique solution. 
Eq. (4) and (5) describe the length and parallelism 
between features, respectively. Apparently, the entire 
mathematical model is not linear so recursive iterations 
are required to update the vector of unknowns in order to 
finally converge to a solution. 
 

[ ]Ti i iv = x y C                           (1) 
 

i i iP K v=                                         (2) 
 

[ ]T1 2 nK K K K=               (3) 
 

( ) ( )T

ij i j i jd P P P P= − −               (4) 

 

( ) ( )1 2 1 2 1 2 1 2

L L R R
i i i i j j j jP P d P P d− = −            (5) 

 
where,  

iv    pixel location of feature point in image frame 
C     focal length 

iP     feature point’s 3D coordinates in the camera frame  

iK    the scale of feature point along the line of sight  
L     the left hallway feature points 
R    the  right hallway feature points 
 
A linearization of Eq. (4) – (5) leads to the coefficients 
of the Jacobian matrix as shown in Eq. (6). As the floor 
plan correspondences provide true measurements of the 
feature lengths and coplanar relationship, the residuals in 
Eq. (7) are applied to update the unknowns in each 
iteration. 
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where,  
Z       the residual between the predicted coplanar 
relationship and length and the true measurements from 
the floor plan correspondences  

coplanarM    the coplanar constraints coefficients matrix of 
the differential of Eq. (4)  

lengthM    the length constraint coefficient matrix of the 
differential of Eq. (3) 
 
2.5 Camera orientation and position determination 
The passive ranging method reconstructs ranges of 2D 
photo features and expresses the features’ 3D 
coordinates in the camera frame. However, we expect a 
more interpretable navigation solution for the camera 
position and orientation. Till now, we have obtained two 
sets of 3D coordinates, features’ position in the camera 
frame and their corresponding floor plan points’ 
positions in the floor plan frame. These two sets of 
coordinates should be mutually transformable through a 
rotation and translation. In computer vision, the 
derivation of the transformation between the two 
correspondence sets is well known as the “Perspective N 
Points (PnP)” problem. In PnP problem, the 
transformation is the result of a camera perspective 
change, therefore, the rotation should be computed from 
the camera orientation and the translation vector is 
exactly equivalent with the camera position. 
 
After the passive ranging, the second step is to find out 
the rotation matrix and translation vector. Horn et al 
(1988) derived a close-form solution, which has 
perfectly enforced the orthonormality property of the 
camera orientation matrix. Further considering the fact 
that photo features and floor plan points are extracted 
from different data sources, it is impossible to derive a 
transformation that can make the two sets perfectly 
coincide. Another remarkable merit of Horn’s solution is 
that the derived transformation is by nature based on the 
least square method which makes the two sets of 
correspondences best fit with each other. 
 
2.6 Robust matching using Random Sample 

Consensus (RANSAC) 
The real scale for the photo features is obtained by 
referring to the corresponding points in the floor plan. 
However, to find correct correspondence for each photo 
feature from a large pool of floor plan points, this should 
be solved before the passive ranging. A robust matching 
is implemented to automatically identify photo-to-floor 

plan correspondences. We assume that in the region of 
interest, hallway features such as doorway and wall 
corner form unique pattern. This unique pattern acts like 
“finger print” of hallway features. The robust matching 
then aims to find those floor plan points that have the 
same “finger print” with the photo features. The classical 
least square based robust matching techniques are not 
employed here, because the least square is an averaging 
technique for redundant observations. In other words, the 
least square is to best fit between the photo and floor 
plan. But when the photo and floor plan cannot agree on 
a universal “finger print”, the disagreement due to 
mismatch will be inappropriately smoothed out. As a 
result, a least square based matching is not efficient to 
distinguish mismatches. 
 
Unlike the least square, RANSAC uses a sample dataset 
as small as feasible to work out an initial guess of a 
camera pose, and then enlarges this set with consistent 
correspondences whenever possible. In our case, we 
need a minimum of four points to obtain a camera pose. 
The RANSAC routine is summarized as follows: 
• Randomly select four feature points and floor plan 

points, noted as 1S . Use the initial guess to derive 
camera position and orientation, noted as 1P . 

• In order to demonstrate 1P  is not only agreed by the 
initial guess sample set, but also agreed by the 
majority of other features, project the rest of the 
floor plan points to it. Comparing with feature 
points, if the projection falls into the error tolerance 
circle specified by a predefined threshold t , enlarge 
the initial sample set 1S  with consensus 
correspondence. 

• When the number of correspondences in the 
redundant consensus set (noted as *

1S ) exceeds a 
predefined threshold m , recalculate the camera 
pose, noted as *

1P . 

• Otherwise, if the size of *
1S   fails to reach the 

threshold, it means the entire dataset can hardly 
agree on 1P . Then repeat from the first step, until the 
maximum number of trials has been reached. 

 
Some important quantities remain to be determined 
before the implementation of RANSAC, including the 
pixel error threshold t  (to determine whether or not a 
correspondence is compatible with current camera pose), 
the consensus sample size threshold m  (the number of 
compatible correspondences that a correct camera pose 
will accept) and the maximum number of trials. Fischler 
and Bolles (1981) have provided the relationship 
between the maximum number of trials and the 
consensus sample size on the basis of a priori 
probability. The pixel error threshold, theoretically, is a 
function of the error associated with the camera location 
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error and misalignment, and the pixel error due to feature 
detection. However, it is not straightforward to derive 
those complicated mathematics. Instead, a more efficient 
method is to estimate the bounds of the error tolerance 
experimentally, for example to check the sample 
deviation by perturbing the correct sample set. 
 
3. Indoor Tests and Results 
 
3.1 Experiment description 
The floor plan database used in our experiments is 
generated from The University of Calgary’s interactive 
online map with a scale accurate within decimeter level. 
In order to demonstrate that the derived camera position 
has a better accuracy than the initial hybrid location, 42 
photos are taken at different indoor landmarks. Each 
photo is matched with the floor plan to derive camera 
position and orientation. For reference purpose, the 
horizontal positions of the landmarks are measured on 
the interactive online map with decimeter level accuracy, 
while the height to ground has used an empirical value of 
1 m. In the following, the performance of the main 
navigation algorithm is evaluated as follows: 
• Paradigm of how to use this iPhone Demo App is 

illustrated; 
• RANSAC matching process is shown to assess how 

well and fast RANSAC can identify reliable matches 
between photo and floor plan; 

• After photo-to-floor plan correspondences are 
identified, the passive ranging method is applied. A 
set of feature ranges converges to their correct value, 
and we hereby reconstruct 2D photo features’ 3D 
coordinates in the camera frame; 

• PnP solution is then implemented to compute the 
camera position and orientation. The features’ 
coordinates in the camera frame are then 
transformed to the floor plan frame and compared 
with their floor plan correspondences. The average 
residuals between them are examined to validate if 
the derived camera pose is correct and robust to 
make the two sets of correspondences mutually 
transformable and best fit. 

• The derived camera positions are compared with the 
reference landmark positions for accuracy analysis. 

 
3.2 iPhone demo App 
An iPhone Demo App has been developed and tested 
with an iPhone. For Demo App, however, the remote 
server is simulated by an online storage Dropbox. Except 
that Dropbox does not have capability to execute the 
main navigation algorithm, the communication with 
Dropbox for uploading and downloading can fully 
represent a FTP service by the remote server. To carry 
out the main navigation algorithm in a post mission, a 
software system is developed in C++ and Matlab, and 
results are loaded to Dropbox for download. Fig. 4 
shows some screen shots when the Demo App is tested 

in the Engineering Building of The University of 
Calgary and the following steps elaborate the paradigm 
of using this App: 
• At the moment of a screen shot, the 

GPS/Cellular/Wi-Fi based indoor location is 
obtained with an accuracy of 74 m. “Link to server” 
button is also shown at the bottom of the screen. See 
Fig. 4.1. 

• After connecting to the remote server, the floor plan 
centred around the initial location is downloaded and 
overlaid on the Google Map. See Fig. 4.2. 

• User takes a photo of the hallway and touch on 
features like doorway and wall corner (shown as red 
dots in Fig. 4.3). With this step, the feature detection 
will detect feature points in the search area specified 
by the red dots as accurate as a few pixels. 

• After execution of the main navigation algorithm 
including robust matching, passive ranging and 
retrieving camera position and orientation, an 
improved position result is sent back and pinned on 
the floor plan (shown as red dot in Fig. 4.4). 
Meanwhile, user can type in a destination room. 

• The feedback in the last step contains improved 
camera position and orientation, which enable the 
software to rotate the floor plan and navigation 
arrow to user’s perspective and overlaid on a camera 
view. Therefore, the augmented navigation reality is 
of the first time brought to the pedestrian indoor 
navigation. If an up-to-date database of room 
inventory is available, event in the destination room 
can also be displayed. See Fig. 4.5. 

 

 
Figure 4: Screen shots of iPhone demo App 

 
3.3 RANSAC matching results 
In the previous section, RANSAC routines are described 
in details. In Fig. 5, the yellow circles show the pixel 
error threshold t ; red stars are photo feature points. The 
camera position and orientation 1P  are at first calculated 
from the initial guess sample set 1S . Other floor plan 
points are projected to the image frame using 1P . Once a 
projection of the floor plan point falls into a yellow 
circle, it is successfully matched with a photo feature, 
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and the pair of photo-to-floor plan correspondences are 
marked in green and yellow stars, so called consensus 
points. Apparently, the pixel error threshold t  shown as 
the radius of the yellow circles should be dependent on 
the feature range. To be specific, larger pixel errors are 
resulted when closer floor plan points are projected to 
the image frame, and vice versa. 
 

 
Figure 5: Pairs of green and yellow stars are consensus 

floor plan points and photo features, respectively; yellow 
circles are pixel error threshold; red stars are photo 

features those fail to match with any floor plan point 
 
In Fig. 5(a), only 8 photo features out of 16 detected 
features find their consensus floor plan points. Since the 
consensus set *

1S  does not pass the threshold of 
consensus size m , the initial guess sample set 1S  is 
probably mismatched, resulting in incorrect camera pose 

1P . Therefore, the RANSAC starts a new iteration from 
the first step and another four points sample set are 
selected as initial guess 2S . After  iterations, sufficient 

consensus points forming *
nS  is found as shown in Fig. 

5(b), 14 out of 16 photo features are matched with the 
floor plan points. It indicates that the initial guess sample 
set nS   is correct and the derived camera pose nP  is not 
only agreed by the sample set but also agreed by the 
majority of the entire dataset. Moreover, for better 
redundancy, an improved camera pose *

nP  will be 
recalculated with the consensus set. 
 
Another important performance of RANSAC matching 
is the speed. Since 42 camera photos are taken in 
different places during the indoor test, the RANSAC 

processing speed for each photo is studied. With a 
maximum number of iterations set to be 500, 2 photos 
are found in failure because RANSAC cannot identify 
sufficient consensus matches within 500 trials. The 
iteration numbers to process each of the rest 40 photos 
are investigated and the histogram is shown in Fig. 6. 
The average number is 41, which is quick enough for 
real time application. 
 

 
Figure 6: Histogram of number of iterations 

 
3.4 Passive ranging results 
Fig. 7 connects each photo-to-floor plan correspondence 
identified by RANSAC. It is obvious to discover that, 
not all of points are correctly matched which will affect 
the passive ranging accuracy. Fortunately, improved 
camera pose is recalculated from this redundant 
consensus set, and errors due to a few mismatches will 
be smoothed out so will not affect the accuracy.  
 

 
Figure 7: Example of feature-to-floor plan 
correspondences identified by RANSAC 
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The passive ranging implement the coplanar and length 
constraint obtained from the floor plan correspondences 
and successfully converges to a set of feature ranges as 
shown in Fig. 8. With them, it is easy to interpret feature 
positions in the camera frame, as shown in Fig. 9. Till 
now, by integrating the floor plan with monocular image, 
the remarkable effect of the passive ranging to 
reconstruct 2D photo feature to 3D space is clearly 
illustrated. 

 
Figure 8: Passive ranging converges to a set of feature 

ranges 
 

 
Figure 9: Reconstructed photo features’ 3D coordinates 

in camera frame. The red rectangle is the origin of 
camera frame 

 
3.5 Camera orientation and position results 
PnP solution is implemented on the two corresponding 
sets of feature positions and floor plan points, and the 
camera position and orientation are produced. By using 
the derived camera pose, features are transformed to the 
floor plan frame and compared with their 
correspondences as shown in Fig. 10. Apparently, these 
two sets of points do not perfectly coincide with each 
other after transformation, but the residual between them 
is reasonable. Error sources causing the residual are 
summarized as follows: 
• Camera calibration error due to, for example, 

inaccurate estimation of the camera perspective 
centre and focal length; 

• Feature detection error 
• Floor plan scale error  
• Remaining mismatch 

 

 
Figure 10: Camera position in the floor plan frame with 
both reconstructed photo features and floor plan points 

 
Among these errors, remaining mismatches account for 
the major part of the residuals, which deteriorate the 
camera position accuracy. Unfortunately, it is impossible 
to find out correspondences free of mismatch from a 
large pool of candidates but within a limited number of 
iterations. Although we have not found an effective 
method to further detect the remaining mismatches, we 
have applied the transformations described above to 
examine residuals when processing the 40 photos.  A 
histogram of residuals is shown in Fig. 11. Since all 
residuals are less than 1 m, it confirms that the derived 
camera position and orientation are reliable even with 
the presence of a few mismatches. 
 

 
Figure 11: Histogram of residual 

 
3.6 Camera position accuracy 
Verifying the camera position accuracy is the final step 
of our analysis. The initial hybrid location accuracy was 
as bad as 74 m during the indoor test. The final derived 
camera position is expected to have much better 
accuracy. Among the 40 photos, each is successfully 
matched with the floor plan and derives camera position 
independently, and the result is compared with the 
reference landmark position. Histograms for the 
horizontal and height errors are displayed in Fig. 13. On 
average, the camera height RMS error is 0.7 m and 
82.5% height RMS errors are less than 1 m, while the 
horizontal RMS error is 2.8 m, with 90% horizontal 
errors less than 5 m. 
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Figure 12: Histogram of iPhone position horizontal and 

vertical error 
 

 
Figure 13: Derived iPhone position with landmark 

positions 
 
4. Conclusions 
 
A monocular vision navigation system integrated with a 
floor plan database has been proposed to improve the 
current GPS and network based pedestrian indoor 
navigation service. Any Wi-Fi enabled camera phone 
and tablet can enjoy the benefits of the proposed system. 
The system robustness has been enforced by a robust 
matching method and reliable camera position and 
orientation. An augmented reality navigation application 
is exhibited as well based on an iPhone Demo App. 
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