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Abstract 

 

With the increasing automation of measurement, 

adjustment, outlier detection and the consequential use 

of the results for real-time applications, reliable methods 

to detect and mitigate an outlier are required.  However, 

it is frequently advised that the outlier test should not be 

used as a means to automatically reject an outlier.  One 

of the reasons for this is that the outlier detection test at 

times can identify a wrong measurement.  To address 

this issue, this paper proposes a new outlier separability 

test to confirm that the identified outlier, by the outlier 

test, can be confidently rejected as the outlier.  In 

addition, the Minimally Separable Bias and the 

separability multiplying factor are also obtained for the 

proposed outlier separability test.  With the initial 

comparisons between the proposed method with the 

reapplication of the global model test method and 

multiple hypothesis method, the advantages of the new 

outlier separability test are demonstrated. 

 

Keywords: Outliers; Statistical Testing; Separability, 

Minimal Separable Bias (MSB); GNSS  
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1. Introduction 

 

An outlier detection test is often used to identify an 

outlying measurement.  However, despite this it is often 

advised, with the use of the outlier test, to simply flag 

suspected outlying measurements for further 

investigations, either in the regular Gauss-Models 

(Baarda, 1968; Pope, 1976) or in the singular ones 

(Wang and Chen, 1999).  One of the reasons for this is 

that the outlier test at times can incorrectly identify a 

wrong measurement as the outlying measurement 

(Stefanovic, 1980; Hawkins, 1980; Krarup et al., 1980; 

Kok, 1984).  Hawkins (1980) refers to such an event as a 

Type III error where the null hypothesis is correctly 

rejected, due to the presence of an outlier; however, the 

wrong measurement is rejected as the outlier.  Therefore, 

in the literature, such occurrence is also called as 

swapping, which may have an impact in navigation 

system performance (e.g., Wang and Ober, 2009). 
 

Due to the increasing need to carry out outlier detection 

and rejection automatically, several strategies have been 

proposed to ensure that the outlying measurement can be 

detected and confidently separated from the rest of the 

measurements. The existing strategies include the 

reapplication of the global model test (Stefanovic, 1980; 

Parkinson & Axelrad, 1988; Lee et al., 1996; Lee and 

Van Dyke, 2002), the multiple hypothesis method 

(Förstner, 1983; Li, 1986), the differencing outlier 

statistics method (Lee, 1995; Kelly, 1998) and the 

Bayesian approach (Pervan et al., 1996; 1998). 
 

In the reapplication of the global model test method, 

each measurement is removed iteratively and the global 

model test is reapplied.  If only one of the resulting 

global model tests passes, it is concluded that the 

corresponding measurement can be confidently 

separated (Stefanovic, 1980; Parkinson and Axelrad, 

1988; Lee et al., 1996; Lee and Van Dyke, 2002).  

However, the reapplication of the global model test 

method does not involve the explicit calculation of the 

confidence level at which the measurement has been 

separated from the remaining measurements. 
 

The multiple hypothesis method proposed by Förstner 

(1983) and Li (1986) is based on the testing of the null 

hypothesis against two alternative hypotheses with the 

bivariate normal distribution formed from two single 

outlier detection statistics.  In addition the method lso 

enables the calculation of the Minimal Separable Bias 

(MSB) for a particular separability confidence level 

between a pair of outlier detection statistics.  With this 

principle, several studies have been carried out to 

analyse the outlier separability with various satellite 

constellations (Hewitson and Wang, 2006; 2007).   
 

The differencing outlier statistics method is based on the 

difference between a pair of outlier detection statistics 

following a normal distribution.  Then, if the magnitude 

of the bias is known, the confidence level at which the 

two outlier statistics can be separated is obtained (Lee, 

1995; Kelly, 1998).  However, in practice the 

magnitudes of the biases are unknown.  Nevertheless, 

based on the assumption that the bias is equal to the 

Minimal Detectable Bias (MDB), Kelly (1998) adopted 
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the method to exclude all the measurements that cannot 

be separated with a given confidence level. 
 

Pervan et al. (1996; 1998) obtained the probability of 

identifying a measurement corresponding with the 

outlier using the Bayesian theory.  However, the method 

is dependent on the initial estimates of the probabilities 

of measurements being contaminated by outliers and 

assumes that the outliers conform to a normal 

distribution. 
 

Hence, to overcome the limitations from the existing 

methods discussed above, a new outlier separability test 

is highly desirable.  In this paper, a practical strategy of 

separating an outlying measurement at a set confidence 

level is developed. The new separability test and the 

associated measures of separability are then applied to 

GNSS positioning examples to demonstrate the 

advantages of the proposed outlier detection and 

identification strategy. 
 

2. The Outlier Detection Test 
 

Assuming that there is no outlier in measurements, the 

least squares estimation of the unknown parameters from 

the measurements can be based on the following 

functional and stochastic models: 
 

         (1) 

    
     

       (2) 
 

where v is the vector of residuals; A is the n by t design 

matrix; x the vector of t parameters and   is the n by 1 

measurement vector. Σ is the positive definite variance 

covariance matrix of the measurements. σ0
2
 is the a priori 

variance factor, Q is the cofactor matrix, and P is the 

weight matrix.   

 

In order to test if there is an outlier in the i
th

 

measurement, the hypotheses to be tested are 
 

      { }                       
     { }             

(3) 

 

where     is the assumed outlier in the i
th

 measurement 

and hi is a vector of zeros with the i
th

 element being 

equal to one, The outlier detection test commonly 

employed to identify an outlier can be derived from the 

mean shift model 
 

 
   [   ] [

 

   
]    (4) 

 

Solving Equations (4) and (2) for the outlier using the 

partitioned matrixes yields (e.g., Wang and Chen, 1994a; 

1999; Kok, 1984; Knight et al., 2010) 
 

   ̂     
        

    
       (5) 

where                     is the cofactor matrix 

of the estimated residuals from the original Gauss-

Markov model without the mean shift, presented by  

Equations (1) and (2). 
 

In addition, the variance of the estimated outlier in the i
th

 

measurement can be evaluated via the error propagation 

as follows 

 

 
   ̂ 

    
    

        
   (6) 

Therefore, the outlier detection test statistic for the i
th

 

measurement can be formed as (Baarda 1968; Kok 1984) 

 

 
   

  ̂ 
   ̂ 

 
  

      

  √  
       

         
(7) 

 

Likewise, in order to test if there is an outlier in the k
th 

measurement, the hypotheses to be tested are 
 

      { }                       
     { }            

(8) 

 

Similarly, the outlier statistic can also be formed for the 

k
th

 measurement using the linear model 
 

 
   [   ] [

 

   
]     (9) 

 

where hk is the vector of zeros with the k
th

 element being 

equal to one, and     is the outlier in the k
th
 

measurement.  Therefore, the k
th

 outlier statistic can be 

formed as 
 

 
   

  ̂ 
   ̂ 

 
  

      

  √  
       

        
(10) 

 

In addition, the correlation coefficient between the i
th

 

and k
th

 outlier detection statistics can be obtained as 

(Förstner 1983) 
 

 
        

  
       

√  
       √  

       

  
(11) 

 

3. The Minimally Detectable Bias 
 

Unfortunately, the outlier statistic test does not always 

detect the presence of a bias with a given confidence 

level.  However, as the size of the bias increases the 

probability of the bias being detected by the outlier 

detection statistic also increases.  Hence, to gain an 

appreciation for how large a bias must become before it 

can be detected, the Minimally Detectable Biases 

(MDBs) are formulated for a given set of Type I and 

Type II errors (Teunissen 1990; 1991).  As shown in 

Figure 1, for the given Type I and Type II errors, αd and 
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βd respectively, if the tiny contribution of the integral 

between -  and     ⁄       under Ha is ignored, the 

corresponding mean shift in the outlier statistic can be 

obtained as follows 
 

          ⁄           
      (12) 

   

In addition, the expected mean shift of the outlier 

statistic when there is an outlier in the i
th

 measurement 

can be obtained as 
 

 

 {  }  
   √  

       

  

  
(13) 

Therefore, if the expected shift of the outlier statistic is 

set as   ,  the MDB of the i
th

 measurement can be 

obtained as 
 

 
     

    

√  
       

 
(14) 

 

Based on the MBS above, other simplified reliability 

measures can also be derived (e.g., Wang and Chen, 

1994a; 1994b; 1999) 

 
Figure 1:  The Outlier Testing and the Null and Alternate Hypotheses 

 

 

4. The Outlier Separability Test  
 

In the outlier detection procedure, the largest outlier 

detection statistic is to be identified and then, the 

measurement associated with this largest detection 

statistic is the most likely outlying measurement.  

Therefore, the larger the difference between any two 

outlier detection statistics, the smaller the probability of 

identifying a wrong measurement. 
 

However, the difference between the two outlier 

detection statistics is dependent on the correlation 

coefficient between the two outlier detection statistics.  

Statistically, both outlier detection statistics are expected 

to be positive or negative if the two statistics are 

positively correlated, and likewise one positive and the 

other one negative if the two statistics are negatively 

correlated.  Therefore, a separability test statistic can be 

formed as 
 

 
    {

               
              

 (15) 

 

However, since the addition and subtraction of two 

normal distributions results in a normal distribution, wik 

also has a normal distribution.  Hence, to obtain the 

variance of the separability statistic the error propagation 

law can be applied to Equation (15) as follows 
 

     
                   (16) 

for the subtraction of the i
th

 and k
th

 outlier detection 

statistics, and 
 

     
                  (17) 

 

for the addition of the i
th

 and k
th

 outlier detection 

statistics.   
 

Therefore, the separability test statistic can be converted 

to the new standardised statistic as:  
 

 

    

{
 
 

 
 

     

√      

           

     

√      

         
 (18) 

 

where the critical value is given by               based 

on    being the Type I error in the separability test with 

the i
th

 and k
th

 outlier statistics.  If | | is smaller than the 

critical value then the null hypothesis 
 

      { }    (19) 
 

is accepted. Therefore, it is concluded that with the given 

confidence level (1-  ), there is not sufficient evidence 

to separate two outlier detection statistics. If | | is larger 

than the critical value, the alternate hypothesis 
 

      { }    (20) 

           

  αd/2   αd/2       βd 

Ho 

   Ha 

δd 

  0 
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is accepted, and thus, the two outlier statistics can be 

separated from each other with a given confidence level 

of 1-  .   

 

The new separability test discussed above is named as 

the JN Test. 

 

5. The Minimally Separable Bias Based on the JN-

Test 
 

Similar to the outlier detection test where the 

corresponding MDB can be obtained, the Minimally 

Separable Bias (MSB) can also be obtained for the above 

separability test (i.e., JN-Test), for a given set of Type I 

and Type II errors.  It is expected that, as the size of the 

bias increases, the probability of the outlier being 

incorrectly identified decreases. Hence, as shown in 

Figure 2, for the given Type I and Type II errors,    and 

   respectively, if the tiny contribution of the integral 

between -  and      
      under Ha is ignored, the 

expected mean shift in the separability test can be 

obtained as follows 
 

                    
      (21) 

 

 

 
Figure 2:  The Separability Test and the Null and Alternate Hypothesis 

 

 

The expected mean shift in the separability test statistic 

can also be obtained based on an outlier in the i
th

 

measurement as  
 

  {   }

 

{
 
 

 
 

   

  √ 
√  

                        

   

  √ 
√  

                         

 
(22) 

 

which can be simplified to 

 

 
 {   }  

   

  √ 
√  

          |   |   (23) 

 

Hence, it can be seen that when the size of the outlier is 

zero, or |   | is equal to one, the separability statistics 

expectation is also zero, which is the situation in which 

the outlier cannot be confidently separated.  However, as 

the size of the outlier increases, the separability statistic 

becomes increasingly noncentral.  Hence, with the 

expected mean shift of the separability statistic    , as 

described by Equation (21), the MSB for the i
th

 and k
th

 

measurements can be obtained as 
 

 
      

    √ 

√  
          |   | 

 
(24) 

Likewise, the MSB for the k
th

 and i
th

 observations when 

the bias is considered in the k
th

 measurement can be 

obtained as 

 

       
    √ 

√  
          |   | 

  
(25) 

  

 
 

6. The Separability Multiplying Factor for the JN-

Test 
 

When using the outlier detection test, together with an 

outlier separability test, to identify and confidently 

separate an outlier, the outlier detection and 

identification process is related to, not only the MDBs 

but also the MSBs.  Hence, to obtain a more complete 

measure of the outlier identification and separation 

performances, the separability multiplying factor,     
  

can be defined as, 

 

           
     (26) 

 

If the MDB and MSB, shown by Equations (14) and (24) 

respectively, are substituted into Equation (26), a unique 

expression for the separability multiplying factor can be 

obtained as follows 

 

     
 

  √ 

  √  |   |
  (27) 

             0 

    /2       /2             

Ho 

   Ha 

δs 
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Hence, it can be seen that the outlier separability 

multiplying factor is dependent on the probabilities of 

Types I and II errors selected, for the outlier detection 

(  ,   ) and for the separability test (  ,   ), as well as 

the correlation coefficient between the two outlier 

detection statistics used.  A graphical representation of 

this relationship is displayed in Figure.3 for various 

correlation coefficients and δs/δd ratios.     

However, since the probabilities of Types I and II errors 

are the predefined values, then the separability 

multiplying factor is primarily dependent on the 

correlation coefficient.  Therefore, small correlation 

coefficients between the outlier statistics are desired in 

order to achieve the smallest separability multiplying 

factors. 

 

 
 

 

 

Figure 3:  Separability Multiplying Factors 

 

 

7. Numerical Examples 

 

As an example, we consider the single point positioning 

situation displayed in Figure 4. The data used here was 

collected from Minot, North Dakota, USA on the 18
th
 

August 2008. 

Based on    and     being 0.1% and 20% respectively, 

the MDBs can be obtained from Equation (14) and are 

displayed in Table 1.  It can be seen that the largest 

MDB is 65m for SV26 and the smallest MDB is 21m for 

SV28. 

 

 
  

Figure 4:  Sky Plot 
 

 

 

   δs/δd 

|   | 
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Table 1:  Minimal Detectable Bias 

SV 4 8 9 11 15 17 26 28 

MDB (m) 61.01 55.64 56.36 43.89 62.33 26.38 65.23 20.90 

 

7.1 An outlier of 500m in SV17 

If an outlier of 500m is now introduced into SV17, 

which is larger than the MDB of 26m, then the outlier 

test consequently fails.  However if the outlier detection 

statistics are examined, as shown in Table 2, it is found 

that the largest outlier statistic corresponds with SV28 

instead of SV17. Hence, if no separability test were 

employed, a Type III error would be committed here, 

with the wrong measurement being rejected. 

 

If a separability test is employed, the separability 

statistics can be computed based on the outlier statistics 

in Table 2 and their correlation coefficients shown in 

Table 3.  In addition if the accepted probability of 

committing a Type I error, αs, is set as 0.1%, the critical 

value of the separability test can be obtained as 3.291.   

Therefore, from the separability statistics in Table 4, it 

can be seen that the pairs of satellites that cannot be 

confidently separated include SV15 and SV8, SV26 and 

SV8, and SV28 and SV17.  However, since it is 

expected that the largest outlier detection statistic (in 

absolute value) will correspond with the outlier 

(Stefanovic 1980), it is simply required to ensure that 

SV28 can be confidently separated from the other outlier 

detection statistics, particularly the second largest one (in 

absolute value).  Therefore, since SV28 cannot be 

confidently separated from SV17 it is concluded that 

there is too much doubt as to which measurement 

contains the outlier at the significance level of 0.1%. 

 

Table 2:  Outlier Statistics for an Outlier of 500m in SV17 

SV 4 8 9 11 15 17 26 28 

w 1.099 15.355 -30.094 69.313 -19.524 79.456 -15.500 -79.458 

 

Table 3:  Correlation Matrix 

ρik 
SVk 

4 8 9 11 15 17 26 28 

SVi 

4 1 -0.7278 0.1389 0.0283 -0.1888 0.0217 -0.2466 -0.0091 

8  1 0.3961 -0.1606 -0.1751 0.1890 -0.2777 -0.1989 

9   1 -0.7696 -0.5079 -0.3774 -0.3406 0.3778 

11    1 0.0327 0.8717 0.0900 -0.8709 

15     1 -0.2416 -0.2569 0.2418 

17      1 -0.2038 -0.9999 

26       1 0.1996 

28        1 

 

Table 4:  Separability Statistics with the JN-Test for an Outlier of 500m in SV17 

    
SVk 

4 8 9 11 15 17 26 28 

SVi 

4  22.302 23.769 -48.932 -14.465 -56.019 -11.732 -55.661 

8 22.302  41.354 65.345 -3.245 -50.331 -0.120 -50.643 

9 -23.769 -41.354  57.773 -50.013 44.236 -39.703 44.252 

11 48.932 65.345 57.773  63.871 -20.023 62.868 -19.965 

15 -14.465 -3.245 -50.013 -63.871  48.662 -28.730 48.669 

17 56.019 50.331 44.236 20.023 48.662  50.683 -0.201 

26 -11.732 -0.120 -39.703 -62.868 -28.730 50.683  50.551 

28 -55.661 -50.643 -44.252 -19.965 -48.669 -0.201 -50.551  
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The separability of the outlier detection statistics can 

also be empirically evaluated using the reapplication of 

the global model test method (Stefanovic, 1980; 

Parkinson and Axelrad, 1988; Lee et al, 1996; Lee and 

Van Dyke, 2002).  If the global model test statistic is 

computed, it is found that the test fails with a value of 

6313.981, which is significantly larger than the critical 

value of 9.488 at the significance level of 5%.  If each 

measurement is now removed and the global model test 

statistic is recomputed, the resulting values are displayed 

in Table 5.  In addition, at the 5% significance level the 

critical value is also reduced to 7.815.   

 

Hence, from Table 5 it can be seen that, in addition to 

SV28 passing, SV17 also passes.  Therefore, it is 

concluded that the outlier cannot be confidently 

identified. 

 
 

 

Table 5:  Global Model Statistics for 

an Outlier of 500m in SV17 

SV       
 ⁄  

4 6312.774 

8 6078.197 

9 5408.240 

11 1509.351 

15 5932.778 

17 0.792 

26 6073.734 

28 0.379 

 

Table 6:  Probabilities of Type I Errors 

  (%) 
SVk 

4 8 9 11 15 17 26 28 

SVi 

4  6.37 0.34 0.20 0.42 0.19 0.56 0.18 

8 6.37  1.16 0.37 0.40 0.43 0.65 0.45 

9 0.34 1.16  8.04 2.02 1.06 0.88 1.06 

11 0.20 0.37 8.04  0.20 14.77 0.27 14.69 

15 0.42 0.40 2.02 0.20  0.55 0.59 0.55 

17 0.19 0.43 1.06 14.77 0.55  0.46 48.93 

26 0.56 0.65 0.88 0.27 0.59 0.46  0.45 

28 0.18 0.45 1.06 14.69 0.55 48.93 0.45  

 

 

In addition, the separability of the outlier statistics can 

also be evaluated using the differencing outlier detection 

statistics method (Lee, 1995; Kelly, 1998).  In this 

method, the probability of committing a Type I error 

between each pair of measurements is computed based 

on the MDBs as shown in Table 1, and the resulting 

values are tabulated in Table 6.  From Table 6 it can be 

seen that all the probabilities of committing a Type I 

error are greater than the accepted probability of 0.1%.  

This is particularly so for SV28 and SV17 with a 

probability of committing a Type I error at 49%.  Hence, 

the outlier of the size just as large as the associated MDB 

cannot be confidently separated. 
 

7.2 An outlier of 1000m in SV17 

If the outlier added to SV17 is increased to 1000m 

instead of 500m, it is found that, as shown in Table 7, 

the identified outlier now corresponds with the true 

outlier in SV17. 

 

Table 7:  Outlier Statistics for an Outlier of 1000m in SV17 

SV 4 8 9 11 15 17 26 28 

w 2.797 30.159 -59.675 137.607 -38.449 157.797 -31.465 -157.793 
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If the separability of the outlier detection statistics is 

evaluated, as shown in Table 8, it is found that now only 

the pairs if the outlier statistics of SV26 and SV8, and 

SV28 and SV17, are considered to be inseparable.  

However since SV17 is the identified outlier statistic, it 

is required that the second largest outlier detection 

statistics (in absolute value) be separable from SV17.  

Since this is not the case, it is still concluded that there is 

too much doubt as to which measurement contains the 

outlier. 

 

 

Table 8:  Separability Statistics for an Outlier of 1000m in SV17 

    
SVk 

4 8 9 11 15 17 26 28 

SVi 

4  44.673 47.602 -96.703 -27.990 -110.811 -23.355 -110.096 

8 44.673  81.737 129.477 -6.454 -100.219 -1.087 -100.834 

9 -47.602 -81.737  114.807 -98.904 87.940 -79.366 87.962 

11 96.703 129.477 114.807  126.579 -39.861 125.326 -39.729 

15 -27.990 -6.454 -98.904 -126.579  96.905 -57.348 96.912 

17 110.811 100.219 87.940 39.861 96.905  100.112 0.307 

26 -23.355 -1.087 -79.366 -125.326 -57.348 100.112  99.846 

28 -110.096 -100.834 -87.962 -39.729 -96.912 0.307 -99.846  

 

 

Table 9:  Global Model Statistics for an Outlier of 1000m in SV17 

SV       
 ⁄  

4 24892.847 

8 23991.175 

9 21338.716 

11 5962.501 

15 23422.194 

17 0.792 

26 23910.523 

28 2.049 

 

 

If the separability using the reapplication of the global 

model test is considered, the statistics obtained are 

shown in Table 9.  Since two global model statistics 

pass, it can hence also be concluded that there is too 

much doubt as to which measurement contains the 

outlier. 

 

In addition, if the separability using the differencing 

outlier statistics method is considered, it is found that the 

probabilities of committing a Type I error are the same 

as in Table 6.  This is due to the fact that the differencing 

outlier statistics method is independent of the sampled 

outlier detection statistics.  Hence, due to the limitation 

of this method, the conclusion will always be made that 

any outlier identified for this particular geometry will be 

inseparable. 

 

7.3 An outlier of 4500m in SV17 

If the outlier added in SV17 is changed to 4500m, it is 

found that the identified outlier indeed corresponds with 

the true outlier in SV17, as shown in Table 10. 

 

 

Table 10:  Outlier Statistics for an Outlier of 4500m in SV17 

SV 4 8 9 11 15 17 26 28 

w 14.544 133.689 -267.165 615.868 -170.904 706.314 -143.208 -706.264 
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If the separability of the outlier detection statistics are 

considered, using the separability statistics that are 

shown in Table 11.  Then it is found that all the 

separability statistics, with respect to the identified 

outlier in SV17, pass at the significance level of 0.1%.  

Hence, the conclusion is made that SV17 can now be 

confidently rejected as the outlier. 

If the separability using the reapplication of the global 

model test is considered, the statistics obtained are 

shown in Table 12. Hence, with a critical value of 7.815 

at the significance level of 5%, it is observed that only 

the global model test of SV17 passes.  Therefore, the 

conclusion is made that SV17 can be confidently 

rejected as the outlier. 

 

 

Table 11:  Separability Statistics for an Outlier of 4500m in SV17 

    
SVk 

4 8 9 11 15 17 26 28 

SVi 

4  201.117 214.595 -431.379 -122.747 -494.494 -104.801 -491.283 

8 201.117  364.681 578.490 -28.972 -449.562 -7.919 -452.297 

9 -214.595 -364.681  513.942 -441.475 393.768 -357.374 393.836 

11 431.379 578.490 513.942  565.656 -178.675 562.653 -178.015 

15 -122.747 -28.972 -441.475 -565.656  434.703 -257.579 434.708 

17 494.494 449.562 393.768 178.675 434.703  446.216 3.865 

26 -104.801 -7.919 -357.374 -562.653 -257.579 446.216  445.005 

28 -491.283 -452.297 -393.836 -178.015 -434.708 3.865 -445.005  

 

 

Table 12:  Global Model Statistics for an Outlier of 4500m in SV17 

SV       
 ⁄  

4 498669.532 

8 481012.225 

9 427421.632 

11 119361.969 

15 469657.701 

17 0.792 

26 478363.736 

28 71.575 

 

 

7.4 The Minimally Separable Biases 

To explain the reason for the outlier in SV17 requiring to 

be significantly larger than the MDB in order to be 

confidently separated from other measurements, the 

MSBs with the JN-Test can be examined.  Therefore, 

calculating the MSBs via Equation (24), with the 

probabilities of committing Type I and II errors set to 

0.1% and 20% respectively, the MSBs can be obtained 

as shown in Table 13.  Hence, it can be seen that all the 

MSBs are larger than their MDBs shown in Table 1.  

However this is particularly the case with the MSB 

between SV17 and SV28 being in the order of thousands 

of meters.  Hence, the reason for the bias in SV17 

requiring to be 4500m, which is 5% bigger than its MSB 

of 4069m, before it could be confidently separated. 

 

In addition, if the separability multiplying factors are 

computed from Equation (27) as shown in Table 14, it is 

also verified that all the MSBs are greater than their 

MDBs, since the values are bigger than one.  In addition, 

the separability multiplying factor between SV17 and 

SV28 are also significantly larger.  However, the reason 

for this can be explained by Equation (27) where it is 

seen that highly correlated outlier statistics result in large 

separability multiplying factors.  Therefore, the MSBs 

and the separability multiplying factors are a reflection 

of the correlation coefficients in Table 3.  This is 

particularly the case with the very high correlation 

between SV17 and SV28 resulting in the very large 

MSBs and separability multiplying factors. 

 

The MSBs can also be evaluated from the multiple 

hypothesis method given by Förstner (1983) and Li 
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(1986).  Therefore setting the accepted probability of 

committing a Type III error, as defined by Förstner 

(1983), to 0.1%, the separability multiplying factors can 

be obtained as shown in Table 15.  Then by multiplying 

by the MDBs in Table 1, the MSBs can the obtained as 

shown in Table 16.  From the MSBs and separability 

multiplying factors, it can also be seen that the MSBs are 

greater than their MDBs, which is particularly the case 

for SV17 and SV28.  In addition, the multiple hypothesis 

method also confirms that a bias in SV17 is required to 

be greater than 3044m in order to be separated with the 

given confidence level. 

 

 

Table 13:  Minimally Separable Biases (MDBs) with the JN-Test 

MSBik (m) 
SVk 

4 8 9 11 15 17 26 28 

SVi 

4  165.360 92.981 87.524 95.795 87.234 99.406 86.673 

8 150.795  101.244 85.875 86.627 87.369 92.577 87.908 

9 85.896 102.564  166.030 113.621 101.008 98.156 101.037 

11 62.972 67.752 129.308  63.117 173.292 65.074 172.753 

15 97.877 97.058 125.666 89.633  101.226 102.269 101.237 

17 37.713 41.420 47.269 104.128 42.831  41.803 4069.200 

26 106.292 108.551 113.612 96.712 107.028 103.392  103.120 

28 29.699 33.031 37.476 82.274 33.951 3225.185 33.045  

 

 

Table 14:  Separability Multiplying Factors with the JN-Test 

    
 

   SVk     

4 8 9 11 15 17 26 28 

SVi 

4  2.710 1.524 1.435 1.570 1.430 1.629 1.421 

8   1.820 1.544 1.557 1.570 1.664 1.580 

9    2.946 2.016 1.792 1.742 1.793 

11     1.438 3.948 1.483 3.936 

15      1.624 1.641 1.624 

17       1.585 154.282 

26        1.581 

28         

 

 

Table 15:  Multiple Hypothesis Method-based Separability Multiplying Factors 

    
 

   SVk     

4 8 9 11 15 17 26 28 

SVi 

4  2.027 1.000 1.000 1.001 1.000 1.093 1.000 

8   1.331 1.001 1.001 1.001 1.147 1.001 

9    2.202 1.501 1.302 1.248 1.305 

11     1.000 2.952 1.000 2.941 

15      1.082 1.112 1.082 

17       1.006 115.397 

26        1.001 

28         

 

 



Wang and Knight: New Outlier Separability Test and Its Application in GNSS Positioning 

  56 

Table 16:  Multiple Hypothesis Method-based Minimally Separable Biases 

MSBik (m) 
SVk 

4 8 9 11 15 17 26 28 

SVi 

4  123.639 61.033 61.012 61.043 61.010 66.659 61.008 

8 112.749  74.029 55.661 55.664 55.666 63.797 55.668 

9 56.379 74.988  124.086 84.571 73.390 70.327 73.543 

11 43.897 43.915 96.649  43.898 129.574 43.906 129.097 

15 62.358 62.355 93.526 62.327  67.442 69.305 67.442 

17 26.377 26.391 34.348 77.859 28.542  26.535 3043.570 

26 71.265 74.793 81.393 65.240 72.530 65.617  65.263 

28 20.905 20.917 27.280 61.482 22.622 2412.269 20.917  

 

When the MSBs from the two methods are compared, it 

can be seen that the MSBs from the multiple hypothesis 

method are less than the MSBs in Table 13.  However, it 

appears that the reason for this is that the multiple 

hypothesis method is a combined test, and does not take 

into account for the probability of   . At this stage, it 

appears that the new separability measures are more 

conservative than the existing one and the computations 

of the probabilities used in the JN-test are much easier 

than those for the combined test. Further analysis on the 

differences between these two methods of separability 

test is needed. 
 

8. Concluding Remarks 
 

There has been an ever increasing demand to automate 

the detection, identification and separation of outlying 

measurements in data processing.  However, in order to 

do so, practical methods to ensure that the identified 

outlying measurement can be confidently separated as 

the real outlier are required. 

 

To address this issue, a separability test has been 

proposed based on the difference between two outlier 

detection statistics.  If the difference between the outlier 

detection statistics is large enough to ensure that the 

probability of rejecting the wrong measurement is 

sufficiently small, it is concluded that the outlier 

statistics can be confidently separated.  In addition, the 

MSB and separability multiplying factor associated with 

the new separability test (called JN-Test) have also been 

derived to enhance the analysis of the separability of a 

measurement system. 

 

With the numerical examples, it has been shown that 

while an outlier is required to be larger than the MDB in 

order to be detected, it is not until the outlier is larger 

than the MSB that the outlier can be confidently 

separated, hence being automatically rejected.  It has 

also been demonstrated that the difference between the 

MDB and the MSB is highly dependent on the 

correlation coefficients between the outlier detection 

statistics, with higher correlation coefficients causing the 

MSBs to be significantly larger than the MDBs. 

 

When the proposed method was compared with the 

existing separability methods, it has been found that the 

proposed separability statistic appears to agree with the 

reapplication of the global model test method.  However, 

the probability level at which the decision is made in the 

reapplication of the global model test method is unclear.  

In addition, the differencing outlier statistics method 

fails to account for the magnitude of the observed outlier 

statistics.  In the comparison of the new separability test 

with the multiple hypothesis method it was discovered 

that the new MSB values are more conservative than the 

multiple hypothesis methods values.  However, much of 

this may be due to the fact that the multiple hypothesis 

method is a combined single test, which does not 

consider the probability   used in the proposed 

separability test.  
 

Further analysis is required to find out the reasons 

behind the minor discrepancies between the new MSBs 

and those obtained from the multiple hypothesis method. 

More broadly, though the outlier separability test can be 

considered as a liner model separability test, that also 

requires further extension to multiple dimensions, to deal 

with, for example, multiple outlier cases.  
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